Spinel ferrite catalysts for CO2 reduction via reverse water gas shift reaction

被引:9
|
作者
Navarro, J. C. [1 ,4 ]
Hurtado, C. [1 ]
Gonzalez-Castano, M. [1 ]
Bobadilla, L. F. [1 ]
Ivanova, S. [1 ]
Cumbrera, F. L. [2 ]
Centeno, M. A. [1 ]
Odriozola, J. A. [1 ,3 ]
机构
[1] Univ Seville, Ctr Mixto CSIC, Inst Ciencia Mat Sevilla, Avda Amer Vespucio 49, Seville 41092, Spain
[2] Univ Seville, Dept Fis Mat Condensada, Seville 41080, Spain
[3] Univ Surrey, Dept Chem & Proc Engn, Guildford GU2 7XH, England
[4] King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr KCC, Thuwal 239556900, Saudi Arabia
关键词
Spinel; Ferrite; Cu; Ni; Oxygen vacancies; Raman; RWGS reaction; ZNFE2O4; PERFORMANCE; NIFE2O4;
D O I
10.1016/j.jcou.2022.102356
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The production of CO via Reverse Water Gas Shift (RWGS) reaction is a suitable route for CO2 valorization. In this study a series of modified spinels AB2O4 (A site symbolscript Ni, Zn and Cu and B symbolscript are investigated as RWGS catalysts and their structure-to-function relationships derived from the changes on the A-site cation are ratio-nalized. For all ferrite systems, the RWGS reaction the process main activity and selectivity is governed by the B -site cation, but the variations on the A-site metals determines catalysts' structural features and stability in the reaction. Among the catalyst series, superior RWGS performance displayed the ferrites modified with Cu and Ni associated to the greater oxygen vacancy population for those spinels enabled by the partial allocation on symbolscript cations into the tetrahedral sites.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Mathematical Modeling of CO2 Reforming of Methane with Reverse Water-Gas Shift Reaction
    Ahmad Reza Rahimi
    Habib AleEbrahim
    Morteza Sohrabi
    Seyed Mohammad Mahdi Nouri
    Kinetics and Catalysis, 2023, 64 : 578 - 587
  • [32] Carbon stabilised saponite supported transition metal-alloy catalysts for chemical CO2 utilisation via reverse water-gas shift reaction
    Nityashree, N.
    Price, C. A. H.
    Pastor-Perez, L.
    Manohara, G. V.
    Garcia, S.
    Maroto-Valer, M. M.
    Reina, T. R.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 261 (261)
  • [33] Reverse water-gas shift reaction over co-precipitated Co-CeO2 catalysts
    Wang, Luhui
    Zhao, Cunyu
    Liu, Hui
    Chen, Ying
    Yang, Shuqing
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [34] CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels
    Daza, Yolanda A.
    Kuhn, John N.
    RSC ADVANCES, 2016, 6 (55): : 49675 - 49691
  • [35] Sorption-enhanced intensified CO2 hydrogenation via reverse water-gas shift reaction: Kinetics and modelling
    Desgagnes, Alex
    Iliuta, Ion
    Iliuta, Maria C.
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [36] Mechanistic insights into chemical reduction of CO2 by reverse water-gas shift reaction on Ru(0001) surface: The water promotion effect
    Sathishkumar, Nadaraj
    Wu, Shiuan-Yau
    Chen, Hsin-Tsung
    APPLIED SURFACE SCIENCE, 2022, 581
  • [37] Reverse water gas shift reaction over Co-precipitated Ni-CeO2 catalysts
    王路辉
    张少星
    刘源
    Journal of Rare Earths, 2008, (01) : 66 - 70
  • [38] Reverse water gas shift reaction over co-precipitated Ni-CeO2 catalysts
    Wang Luhui
    Zhang Shaoxing
    Liu Yuan
    JOURNAL OF RARE EARTHS, 2008, 26 (01) : 66 - 70
  • [39] Bioinspired catalysts: Spinel composite electrodes for water oxidation and CO2 reduction
    Gardner, Graeme C.
    Robinson, David M.
    Cady, Clyde C.
    Go, Yong-Bok C.
    Lobaccaro, Peter
    Maron, Zach C.
    Biradar, Ankush V.
    Greenblatt, Martha C.
    Dismukes, G. Charles
    Asefa, Tewodros C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [40] MIL-100(Fe)-derived catalysts for CO2 conversion via low- and high-temperature reverse water-gas shift reaction
    Loe, Jesus Gandara
    Pena, Alejandro Pinzon
    Espejo, Juan Luis Martin
    Bobadilla, Luis F.
    Reina, Tomas Ramirez
    Pastor-Perez, Laura
    HELIYON, 2023, 9 (05)