MShNet: Multi-scale feature combined with h-network for medical image segmentation

被引:11
|
作者
Peng, Yanjun [1 ]
Yu, Dian [1 ]
Guo, Yanfei [1 ]
机构
[1] Shandong Univ Sci & Technol, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Medical image segmentation; h-network; Enhanced down-sampling; Multi-scale;
D O I
10.1016/j.bspc.2022.104167
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Medical image segmentation is the key foundation of medical image analysis. However, the uncertainty of the size, shape and location of the lesion greatly affect the segmentation accuracy. To solve the above problems, the multi-scale feature combined with the h-network (MShNet) is proposed in this paper. Methods: Firstly, a network framework, which is similar in shape to the letter "h"and consists of an encoder and two decoders is built to obtain stronger feature expression ability. The first decoder is responsible for obtaining the preliminary segmentation information of the image, and the second decoder enhances the feature expression of the nodule by fusing the information learned by the first decoder. Secondly, an enhanced down-sampling module is constructed in the encoder to reduce the information loss caused by down-sampling. In addition, to further reinforce the generalization ability of the model, the fusion convolutional pyramid pooling is designed to realize multi-scale feature fusion. Results: In the internal dataset of thyroid nodules, the DSC is 0.8721 and the HD is only 0.9356; DSC in the public dataset (DDTI,TN3K,ISIC and BUSI) also reached the optimal levels of 0.7580, 0.7815, 0.8853 and 0.7501 respectively and the HD for the last segmentation (Kvasir-SEG) is 16.5197.Conclusion: A large number of experimental results show that MShNet effectively improves the segmen-tation performance with less parameters, and achieves the most advanced performance in robustness and efficiency.Significance: The proposed algorithm provides a deep learning segmentation procedure that can segment thyroid nodule in ultrasound images effectively and efficiently.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] SMANet: Superpixel-guided multi-scale attention network for medical image segmentation
    Shen, Yiwei
    Guo, Junchen
    Liu, Yan
    Xu, Chang
    Li, Qingwu
    Qi, Fei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [32] Dynamic hierarchical multi-scale fusion network with axial MLP for medical image segmentation
    Cheng, Zhikun
    Wang, Liejun
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [33] SegAN: Adversarial Network with Multi-scale L 1 Loss for Medical Image Segmentation
    Xue, Yuan
    Xu, Tao
    Zhang, Han
    Long, L. Rodney
    Huang, Xiaolei
    NEUROINFORMATICS, 2018, 16 (3-4) : 383 - 392
  • [34] MCDALNet: Multi-scale Contextual Dual Attention Learning Network for Medical Image Segmentation
    Guo, Pengcheng
    Su, Xiangdong
    Zhang, Haoran
    Bao, Feilong
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [35] Multimodal medical image segmentation using multi-scale context- aware network
    Wang, Xue
    Li, Zhanshan
    Huang, Yongping
    Jiao, Yingying
    NEUROCOMPUTING, 2022, 486 : 135 - 146
  • [36] Dynamic hierarchical multi-scale fusion network with axial MLP for medical image segmentation
    Zhikun Cheng
    Liejun Wang
    Scientific Reports, 13
  • [37] MSAR-Net: A multi-scale attention residual network for medical image segmentation
    Li, Xiaoheng
    Chen, Cheng
    Chen, Yunqing
    Yu, Ming-an
    Xiao, Ruoxiu
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [38] Multi-Scale Feature Aggregation Network for Water Area Segmentation
    Hu, Kai
    Li, Meng
    Xia, Min
    Lin, Haifeng
    REMOTE SENSING, 2022, 14 (01)
  • [39] Remote sensing image semantic segmentation network based on multi-scale feature enhancement fusion
    Wang, Feiting
    Zhang, Yuan
    Hu, Qiongqiong
    Zhu, Yu
    GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [40] Deep multi-scale attentional features for medical image segmentation
    Poudel, Sahadev
    Lee, Sang-Woong
    APPLIED SOFT COMPUTING, 2021, 109