Minimax powerful functional analysis of covariance tests with application to longitudinal genome-wide association studies

被引:0
|
作者
Zhu, Weicheng [1 ]
Xu, Sheng [2 ]
Liu, Catherine C. [3 ]
Li, Yehua [4 ]
机构
[1] Amazon Inc, Seattle, WA USA
[2] BeiGene Co Ltd, Global Stat & Data Sci, Beijing, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
[4] Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USA
基金
美国国家卫生研究院;
关键词
functional data; GWAS; hypothesis testing; kernel smoothing; longitudinal data; minimax power; SEMIPARAMETRIC REGRESSION; NONPARAMETRIC REGRESSION; MODELS; LIKELIHOOD; STATISTICS; SELECTION; SPARSE;
D O I
10.1111/sjos.12583
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We model the Alzheimer's disease-related phenotype response variables observed on irregular time points in longitudinal Genome-Wide Association Studies as sparse functional data and propose nonparametric test procedures to detect functional genotype effects while controlling the confounding effects of environmental covariates. Our new functional analysis of covariance tests are based on a seemingly unrelated kernel smoother, which takes into account the within-subject temporal correlations, and thus enjoy improved power over existing functional tests. We show that the proposed test combined with a uniformly consistent nonparametric covariance function estimator enjoys the Wilks phenomenon and is minimax most powerful. Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative database, where an application of the proposed test lead to the discovery of new genes that may be related to Alzheimer's disease.
引用
收藏
页码:266 / 295
页数:30
相关论文
共 50 条
  • [21] Genome-Wide Association Studies for Bivariate Sparse Longitudinal Data
    Das, Kiranmoy
    Li, Jiahan
    Fu, Guifang
    Wang, Zhong
    Wu, Rongling
    HUMAN HEREDITY, 2011, 72 (02) : 110 - 120
  • [22] A Bayesian functional principal component analysis framework for genome-wide association with longitudinal outcomes
    Temko, Daniel
    Nolan, Tui H.
    Richardson, Sylvia
    Ruffieux, Helene
    HUMAN HEREDITY, 2023, 88 (SUPPL 1) : 12 - 12
  • [23] Powerful SNP-Set Analysis for Case-Control Genome-wide Association Studies
    Wu, Michael C.
    Kraft, Peter
    Epstein, Michael P.
    Taylor, Deanne M.
    Chanock, Stephen J.
    Hunter, David J.
    Lin, Xihong
    AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 86 (06) : 929 - 942
  • [24] SNP2GO: Functional Analysis of Genome-Wide Association Studies
    Szkiba, David
    Kapun, Martin
    von Haeseler, Arndt
    Gallach, Miguel
    GENETICS, 2014, 197 (01) : 285 - 289
  • [25] Bi-level structured functional analysis for genome-wide association studies
    Wu, Mengyun
    Wang, Fan
    Ge, Yeheng
    Ma, Shuangge
    Li, Yang
    BIOMETRICS, 2023, 79 (04) : 3359 - 3373
  • [26] Functional analysis of candidate genes from genome-wide association studies of hearing
    Ingham, Neil J.
    Rook, Victoria
    Di Domenico, Francesca
    James, Elysia
    Lewis, Morag A.
    Girotto, Giorgia
    Buniello, Annalisa
    Steel, Karen P.
    HEARING RESEARCH, 2020, 387
  • [27] Genome-wide association studies
    Nature Reviews Methods Primers, 1
  • [28] Genome-wide association studies
    Willson, Joseph
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [29] Genome-Wide Association Studies
    Guo, Xiuqing
    Rotter, Jerome I.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 322 (17): : 1705 - 1706
  • [30] Visualization and Functional Analysis of Genome-Wide Association Results
    Narayanan, Kanchana
    Li, Jing
    2009 OHIO COLLABORATIVE CONFERENCE ON BIOINFORMATICS, PROCEEDINGS, 2009, : 9 - 13