SPECTRAL PERTURBATION BY RANK m MATRICES

被引:0
|
作者
Merzel, Jonathan L. [1 ]
Minac, Jan [2 ]
Nguyen, Tung T. [2 ]
Pasini, Federico W. [3 ]
机构
[1] Soka Univ Amer, Dept Math, 1 Univ Dr, Aliso Viejo, CA 92656 USA
[2] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
[3] Huron Univ Coll, London, ON, Canada
来源
OPERATORS AND MATRICES | 2023年 / 17卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
Rank-m perturbation; eigenspectra; matrix theory; LARGEST EIGENVALUE;
D O I
10.7153/oam-2023-17-58
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and B designate n x n matrices with coefficients in a field F . In this paper, we completely answer the following question: For A fixed, what are the possible characteristic polynomials of A+B, where B ranges over matrices of rank m?
引用
收藏
页码:867 / 874
页数:8
相关论文
共 50 条
  • [41] TENSOR RANK AND BORDER RANK OF BAND TOEPLITZ MATRICES
    BINI, D
    CAPOVANI, M
    SIAM JOURNAL ON COMPUTING, 1987, 16 (02) : 252 - 258
  • [42] COMPLETELY POSITIVE MATRICES WITH (A)=Rank(A)
    Xu Changqing(Dept.of Math.
    Numerical Mathematics(Theory,Methods and Applications), 2000, (S1) : 49 - 52
  • [43] The rank of sparse random matrices
    Coja-Oghlan, Amin
    Ergur, Alperen A.
    Gao, Pu
    Hetterich, Samuel
    Rolvien, Maurice
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (01) : 68 - 130
  • [44] The rank of sparse random matrices
    Coja-Oghlan, Amin
    Ergur, Alperen A.
    Gao, Pu
    Hetterich, Samuel
    Rolvien, Maurice
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 579 - 591
  • [45] THEOREM ON RANK OF A DIFFERENCE OF MATRICES
    CLINE, RE
    FUNDERLIC, RE
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (01) : 48 - 48
  • [46] Resilience of the rank of random matrices
    Ferber, Asaf
    Luh, Kyle
    McKinley, Gweneth
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 163 - 174
  • [47] THE RANK OF REDUCED DISPERSION MATRICES
    BEKKER, PA
    DELEEUW, J
    PSYCHOMETRIKA, 1987, 52 (01) : 125 - 135
  • [48] On the rank of higher inclusion matrices
    Grosu, Codrut
    Person, Yury
    Szabo, Tibor
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 90 : 333 - 349
  • [49] Sign and rank covariance matrices
    Visuri, S
    Koivunen, V
    Oja, H
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 91 (02) : 557 - 575
  • [50] SPACES OF MATRICES OF EQUAL RANK
    BEASLEY, LB
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 38 (JUN) : 227 - 237