Modeling of grinding force in longitudinal ultrasonic vibration-assisted grinding alumina ceramics and experimental evaluation

被引:5
|
作者
Zhao, Mingli [1 ]
Xue, Boxi [1 ]
Li, Bohan [1 ]
Zhu, Junming [1 ]
WenbinSong [1 ]
Nie, Lixin [1 ]
机构
[1] Henan Polytech Univ, Sch Mech & Power Engn, Jiaozuo 454000, Peoples R China
基金
中国国家自然科学基金;
关键词
Longitudinal ultrasonic grinding; Alumina ceramic; Force model; Grinding; MATERIAL-REMOVAL; CHIP THICKNESS; ZIRCONIA CERAMICS;
D O I
10.1007/s00170-023-11590-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ultrasonic vibration-assisted grinding is an effective method for improving the surface quality of brittle and hard materials. The grinding force is one of the key factors affecting the surface quality of the machined surface, and this has been investigated both experimentally and theoretically. However, the influence of process parameters on grinding forces during longitudinal ultrasonic vibration-assisted grinding (LUVAG) of alumina ceramics has not been studied in depth. To investigate the effects of various parameters on the grinding forces of LUVAG of alumina ceramics, the kinematic theory of LUVAG was combined with the effective cutting trajectory of transient single-grain abrasives and the effective removal of transient material to develop a LUVAG alumina ceramic grinding force model and a LUVAG endface grinding force model. The experimental results showed that the grinding depth (a(p)) and table speed (v(w)) were positively correlated with the tangential grinding force (F-t) and the normal grinding force (F-n) (when v(w) increased from 400 to 1000 mm/min, F-t increased by about 10 to 15% and F-n increased by 30 to 45%; when a(p) increased from 5 mu m to 20 mu m, F-t increased by 20 to 30%, F-n increases by 25 to 30%). The ultrasonic amplitude (A) is negatively correlated with the grinding force (when A increases from 4 to 12 mu m, F-t decreases by 5 to 10% and F-n decreases by 25 to 30%). The grinding wheel speed (v(s)) was positively correlated with F-t but negatively correlated with F-n (when the grinding wheel speed increased from 1400 to 3500r/min, F-t increased by 20 to 36% and F-n decreased by 30 to 46%). According to the range analysis, F-t is the minimum when a(p)=5 mu m, v(s) =1400 r/min, A=12 mu m, v(w)=600 mm/min, and F-n is the minimum when a(p) =5 mu m, v(s) =3500 r/min, v(w) =600 mm/min, A=12 mu m. The results of the theoretical model calculations show that the predicted values of the grinding forces for the given parameters are in general agreement with the experimental results. The maximum relative mean error between the theoretical and experimental results was 12.3%, while the overall relative mean error was 4.94%. At the same time, it was demonstrated that the model can assist orthogonal experiments for factor selection and scheme optimization, which has important practical application value.
引用
收藏
页码:2325 / 2339
页数:15
相关论文
共 50 条
  • [21] On the grinding performance of alumina wheels in ultrasonic vibration-assisted grinding of hardened GCr15 steel
    Qiu, Yutong
    Zhao, Biao
    Cao, Yang
    Ding, Wenfeng
    Fu, Yucan
    Pu, Changlan
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (3-4): : 1695 - 1706
  • [22] AAC theory for ultrasonic vibration-assisted grinding
    Hu, Zhongwei
    Chen, Yue
    Lai, Zhiyuan
    Zhang, Yuqiang
    Yu, Yiqing
    Jin, Jianfeng
    Peng, Qing
    Xu, Xipeng
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 133 (3-4): : 1609 - 1620
  • [23] Experimental Study on Vibration-Assisted Grinding
    Li, Kuan-Ming
    Hu, Yang-Ming
    Yang, Zhong-Yi
    Chen, Ming-Yuan
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2012, 134 (04):
  • [24] The Effect of Torsional Vibration in Longitudinal-Torsional Coupled Ultrasonic Vibration-Assisted Grinding of Silicon Carbide Ceramics
    Chen, Yurong
    Su, Honghua
    He, Jingyuan
    Qian, Ning
    Gu, Jiaqing
    Xu, Jiuhua
    Ding, Kai
    MATERIALS, 2021, 14 (03) : 1 - 16
  • [25] Critical grinding depth of ultrasonic vibration-assisted electrolytic in-process dressing grinding in ZTA ceramics
    Xiaofeng Jia
    He Wang
    Fei Zhao
    The International Journal of Advanced Manufacturing Technology, 2022, 120 : 7127 - 7141
  • [26] Force and thermal effects in vibration-assisted grinding
    Mahaddalkar, Prasanna M.
    Miller, Michele H.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 71 (5-8): : 1117 - 1122
  • [27] Critical grinding depth of ultrasonic vibration-assisted electrolytic in-process dressing grinding in ZTA ceramics
    Jia, Xiaofeng
    Wang, He
    Zhao, Fei
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (11-12): : 7127 - 7141
  • [28] Force and thermal effects in vibration-assisted grinding
    Prasanna M. Mahaddalkar
    Michele H. Miller
    The International Journal of Advanced Manufacturing Technology, 2014, 71 : 1117 - 1122
  • [29] Experimental study on ultrasonic vibration-assisted grinding of quartz glass microchannel
    Lu, Yan-Jun
    Guo, Ming-Rong
    Dai, Yong-Qi
    Wang, Qiang
    Luo, Hu
    ADVANCES IN MANUFACTURING, 2025,
  • [30] Tribological properties of surface topography in ultrasonic vibration-assisted grinding of zirconia ceramics
    Li, Zhihua
    Zheng, Kan
    Liao, Wenhe
    Xiao, Xingzhi
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2018, 232 (22) : 4203 - 4215