An algorithm for split equilibrium and fixed-point problems using inertial extragradient techniques

被引:4
|
作者
Ezeora, Jeremiah N. N. [1 ]
Enyi, Cyril D. D. [2 ]
Nwawuru, Francis O. O. [3 ]
Ogbonna, Richard C. C. [4 ]
机构
[1] Univ Port Harcourt, Dept Math & Stat, Port Harcourt, Nigeria
[2] Univ Hafr Al Batin, Dept Math, Hafar al Batin, Saudi Arabia
[3] Chukwuemeka Odumegwu Ojukwu Univ, Dept Math, Awka, Anambra State, Nigeria
[4] Evangel Univ, Dept Comp Sci & Math, Aka Eze, Nigeria
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2023年 / 42卷 / 02期
关键词
Pseudomonotone; Lipschitz continuous; Fixed point; Nonexpansive mapping; Extragradient method; AUXILIARY PROBLEM PRINCIPLE; CONVERGENCE; PROJECTION;
D O I
10.1007/s40314-023-02244-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study in this article, split equilibrium fixed-point problems involving pseudomonotone bifunctions which satisfy Lipschitz-type continuous condition and nonexpansive mappings, respectively, in real Hilbert spaces. In order to solve this problem, we propose an inertial extragradient algorithm and establish strong convergence theorem using the sequence of the algorithm under mild conditions. A numerical example given demonstrates that our algorithm is efficient and is superior to the algorithm studied by Narin (J Ineq Appl 2019:137, 2019).
引用
收藏
页数:27
相关论文
共 50 条