Imaging and Hemodynamic Characteristics of Vulnerable Carotid Plaques and Artificial Intelligence Applications in Plaque Classification and Segmentation

被引:10
|
作者
Han, Na [1 ,2 ,3 ]
Ma, Yurong [1 ,2 ]
Li, Yan [4 ]
Zheng, Yu [1 ,2 ,3 ]
Wu, Chuang [1 ,2 ]
Gan, Tiejun [1 ,2 ]
Li, Min [1 ,2 ]
Ma, Laiyang [1 ,2 ,3 ]
Zhang, Jing [1 ,2 ]
机构
[1] Lanzhou Univ, Dept Magnet Resonance, Hosp 2, Lanzhou 730030, Peoples R China
[2] Gansu Prov Clin Res Ctr Funct & Mol Imaging, Lanzhou 730030, Peoples R China
[3] Lanzhou Univ, Clin Sch 2, Lanzhou 730030, Peoples R China
[4] Lanzhou Univ, Sch Math & Stat, Lanzhou 730030, Peoples R China
基金
中国国家自然科学基金;
关键词
vulnerable plaque; VW-HRMRI; 4D flow; artificial intelligence; stroke; WALL SHEAR-STRESS; EXPERT CONSENSUS RECOMMENDATIONS; ARTERY WALL; ATHEROSCLEROTIC PLAQUE; INTRAPLAQUE HEMORRHAGE; PROGRESSION; ULCERATION; STENOSIS; STROKE; MRI;
D O I
10.3390/brainsci13010143
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Stroke is a massive public health problem. The rupture of vulnerable carotid atherosclerotic plaques is the most common cause of acute ischemic stroke (AIS) across the world. Currently, vessel wall high-resolution magnetic resonance imaging (VW-HRMRI) is the most appropriate and cost-effective imaging technique to characterize carotid plaque vulnerability and plays an important role in promoting early diagnosis and guiding aggressive clinical therapy to reduce the risk of plaque rupture and AIS. In recent years, great progress has been made in imaging research on vulnerable carotid plaques. This review summarizes developments in the imaging and hemodynamic characteristics of vulnerable carotid plaques on the basis of VW-HRMRI and four-dimensional (4D) flow MRI, and it discusses the relationship between these characteristics and ischemic stroke. In addition, the applications of artificial intelligence in plaque classification and segmentation are reviewed.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Remnant lipoproteins are related to echolucent plaques vulnerable to rupture but not to plaque size in carotid arteries
    Honda, O
    Sugiyama, S
    Kugiyama, K
    Fukushima, H
    Nakamura, SI
    Koide, SI
    Kawano, H
    CIRCULATION, 2001, 104 (17) : 672 - 672
  • [22] CD163+macrophages are associated with a vulnerable plaque phenotype in human carotid plaques
    Bengtsson, Eva
    Hultman, Karin
    Edsfeldt, Andreas
    Persson, Ana
    Nitulescu, Mihaela
    Nilsson, Jan
    Goncalves, Isabel
    Bjorkbacka, Harry
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [23] CD163+ macrophages are associated with a vulnerable plaque phenotype in human carotid plaques
    Eva Bengtsson
    Karin Hultman
    Andreas Edsfeldt
    Ana Persson
    Mihaela Nitulescu
    Jan Nilsson
    Isabel Gonçalves
    Harry Björkbacka
    Scientific Reports, 10
  • [24] Multimodality Imaging Classification for Carotid Plaque Assessment
    Naqvi, Tasneem Z.
    JACC-CARDIOVASCULAR IMAGING, 2024, 17 (01) : 76 - 78
  • [25] Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application
    Saba, Luca
    Sanagala, Skandha S.
    Gupta, Suneet K.
    Koppula, Vijaya K.
    Johri, Amer M.
    Khanna, Narendra N.
    Mavrogeni, Sophie
    Laird, John R.
    Pareek, Gyan
    Miner, Martin
    Sfikakis, Petros P.
    Protogerou, Athanasios
    Misra, Durga P.
    Agarwal, Vikas
    Sharma, Aditya M.
    Viswanathan, Vijay
    Rathore, Vijay S.
    Turk, Monika
    Kolluri, Raghu
    Viskovic, Klaudija
    Cuadrado-Godia, Elisa
    Kitas, George D.
    Sharma, Neeraj
    Nicolaides, Andrew
    Suri, Jasjit S.
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (14)
  • [26] Detecting the vulnerable carotid plaque: the Carotid Artery Multimodality imaging Prognostic study design
    Gargani, Luna
    Baldini, Matteo
    Berchiolli, Raffaella
    Bort, Ida Rebecca
    Casolo, Giancarlo
    Chiappino, Dante
    Cosottini, Mirco
    D'Angelo, Gennaro
    De Santis, Mariella
    Erba, Paola
    Fabiani, Iacopo
    Fabiani, Plinio
    Gabbriellini, Ilaria
    Galeotti, Gian Giacomo
    Ghicopulos, Irene
    Goncalves, Isabel
    Lapi, Simone
    Masini, Gabriele
    Morizzo, Carmela
    Napoli, Vinicio
    Nilsson, Jan
    Orlandi, Giovanni
    Palombo, Carlo
    Pieraccini, Francesco
    Ricci, Stefano
    Siciliano, Gabriele
    Slart, Riemer H. J. A.
    De Caterina, Raffaele
    JOURNAL OF CARDIOVASCULAR MEDICINE, 2022, 23 (07) : 466 - 473
  • [27] Artificial Intelligence in Symptomatic Carotid Plaque Detection: A Narrative Review
    Miceli, Giuseppe
    Rizzo, Giuliana
    Basso, Maria Grazia
    Cocciola, Elena
    Pennacchio, Andrea Roberta
    Pintus, Chiara
    Tuttolomondo, Antonino
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [28] High-resolution magnetic resonance imaging of carotid atherosclerosis identifies vulnerable carotid plaques
    Millon, Antoine
    Mathevet, Jean-Louis
    Boussel, Loic
    Faries, Peter L.
    Fayad, Zahi A.
    Douek, Philippe C.
    Feugier, Patrick
    JOURNAL OF VASCULAR SURGERY, 2013, 57 (04) : 1046 - U479
  • [29] The hemodynamic and geometric characteristics of carotid artery atherosclerotic plaque formation
    Han, Na
    Wang, Jintao
    Ma, Yurong
    Ma, Laiyang
    Zheng, Yu
    Fan, Fengxian
    Wu, Chuang
    Yue, Songhong
    Li, Jie
    Li, Juan
    Zhang, Hui
    Zhou, Yuxuan
    Yang, Tingli
    Zhang, Jing
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (07) : 4348 - 4361
  • [30] Ultrasound lmaging-vulnerable plaque diagnostics: Automatic carotid plaque segmentation based on deep learning
    Chen, Xiao-xiao
    Kong, Zi-xiang
    Wei, Shu-fang
    Liang, Fei
    Feng, Ting
    Wang, Shan-shan
    Gao, Jian-song
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2023, 16 (03)