Effect of Elevated CO2 and Drought on Biomass, Gas Exchange and Wood Structure of Eucalyptus grandis

被引:1
|
作者
Costa, Layssa da Silva [1 ]
Vuralhan-Eckert, Jasmin [1 ]
Fromm, Joerg [1 ]
机构
[1] Univ Hamburg, Inst Wood Biol, Leuschnerstr 91d, D-21031 Hamburg, Germany
来源
PLANTS-BASEL | 2023年 / 12卷 / 01期
关键词
climate change; drought stress; elevated carbon dioxide; gas exchange; vessel formation; hydraulic architecture; Eucalyptus; WATER-USE EFFICIENCY; GENE-EXPRESSION; GROWTH; PHOTOSYNTHESIS; RESPONSES; STRESS; NITROGEN; SIZE;
D O I
10.3390/plants12010148
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Juvenile Eucalyptus grandis were exposed to drought and elevated CO2 to evaluate the independent and interactive effects on growth, gas exchange and wood structure. Trees were grown in a greenhouse at ambient and elevated CO2 (aCO(2), 410 ppm; eCO(2), 950 ppm), in combination with daily irrigation and cyclic drought during one growing season. The results demonstrated that drought stress limited intercellular CO2 concentration, photosynthesis, stomatal conductance, and transpiration, which correlated with a lower increment in height, stem diameter and biomass. Drought also induced formation of frequent and narrow vessels accompanied by a reduction in vessel lumen area. Conversely, elevated CO2 increased intercellular CO2 concentration as well as photosynthesis, and partially closed stomata, leading to a more efficient water use, especially under drought. There was a clear trend towards greater biomass accumulation at eCO(2), although the results did not show statistical significance for this parameter. We observed an increase in vessel diameter and vessel lumen area at eCO(2), and, contrarily, the vessel frequency decreased. Thus, we conclude that eCO(2) delayed the effects of drought and potentialized growth. However, results on vessel anatomy suggest that increasing vulnerability to cavitation due to formation of larger vessels may counteract the beneficial effects of eCO(2) under severe drought.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] The effects of drought, heat and elevated atmospheric CO2 on physiology and growth of Eucalyptus - Does climate-of-origin matter?
    Wesolowski, A.
    AUSTRALIAN FORESTRY, 2019, 82 (04) : 190 - 190
  • [42] Effect of Elevated CO2 and Drought on Soil Microbial Communities Associated with Andropogon gerardii
    Issmat I.Kassem
    Puneet Joshi
    Von Sigler
    Scott Heckathorn1
    Journal of Integrative Plant Biology, 2008, (11) : 1406 - 1415
  • [43] Effect of Elevated CO2 and Drought on Soil Microbial Communities Associated with Andropogon gerardii
    Kassem, Issmat I.
    Joshi, Puneet
    Sigler, Von
    Heckathorn, Scott
    Wang, Qi
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2008, 50 (11) : 1406 - 1415
  • [44] Elevated CO2 Atmosphere Minimizes the Effect of Drought on the Cerrado Species Chrysolaena obovata
    Oliveira, Vanessa F.
    Silva, Emerson A.
    Carvalho, Maria A. M.
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [45] The Reciprocal Effect of Elevated CO2 and Drought on Wheat-Aphid Interaction System
    Xie, Haicui
    Shi, Fengyu
    Li, Jingshi
    Yu, Miaomiao
    Yang, Xuetao
    Li, Yun
    Fan, Jia
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [46] RESPONSES OF SHOOT AND ROOT GAS-EXCHANGE, LEAF BLADE EXPANSION AND BIOMASS PRODUCTION TO PULSES OF ELEVATED CO2 IN HYDROPONIC WHEAT
    CHRIST, RA
    KORNER, C
    JOURNAL OF EXPERIMENTAL BOTANY, 1995, 46 (292) : 1661 - 1667
  • [47] Temperature and CO2 dependent gas exchange of Fagus sylvatica L. after growth at elevated CO2 concentration
    Strassemeyer, J
    Forstreuter, M
    Overdieck, D
    VERHANDLUNGEN DER GESELLSCHAFT FUR OKOLOGIE, VOL 27, 1997, : 303 - 309
  • [48] Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery
    Robredo, Anabel
    Perez-Lopez, Usue
    Miranda-Apodaca, Jon
    Lacuesta, Maite
    Mena-Petite, Amaia
    Munoz-Rueda, Alberto
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2011, 71 (03) : 399 - 408
  • [49] Wood CO2 efflux and foliar respiration for Eucalyptus in Hawaii and Brazil
    Ryan, Michael G.
    Cavaleri, Molly A.
    Almeida, Auro C.
    Penchel, Ricardo
    Senock, Randy S.
    Stape, Jose Luiz
    TREE PHYSIOLOGY, 2009, 29 (10) : 1213 - 1222
  • [50] Responses of Forest Carbon Cycle to Drought and Elevated CO2
    Xiao, Jun-Lan
    Zeng, Feng
    He, Qiu-Lan
    Yao, Yu-Xia
    Han, Xiao
    Shi, Wei-Yu
    ATMOSPHERE, 2021, 12 (02)