Replay-Based Online Adaptation for Unsupervised Deep Visual Odometry

被引:0
|
作者
Kuznietsov, Yevhen [1 ]
Proesmans, Marc [1 ]
Van Gool, Luc [1 ,2 ,3 ]
机构
[1] Katholieke Univ Leuven, Leuven, Belgium
[2] Swiss Fed Inst Technol, Zurich, Switzerland
[3] INSAIT Sofia, Sofia, Bulgaria
来源
PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I | 2024年 / 14469卷
关键词
Visual odometry; Online adaptation; Experience replay;
D O I
10.1007/978-3-031-49018-7_48
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Online adaptation is a promising paradigm that enables dynamic adaptation to new environments. In recent years, there has been a growing interest in exploring online adaptation for various problems, including visual odometry, a crucial task in robotics, autonomous systems, and driver assistance applications. In this work, we leverage experience replay, a potent technique for enhancing online adaptation, to explore the replay-based online adaptation for unsupervised deep visual odometry. Our experiments reveal a remarkable performance boost compared to the non-adapted model. Furthermore, we conduct a comparative analysis against established methods, demonstrating competitive results that showcase the potential of online adaptation in advancing visual odometry.
引用
收藏
页码:674 / 684
页数:11
相关论文
共 50 条
  • [31] An Unsupervised Monocular Visual Odometry Based on Multi-Scale Modeling
    Zhi, Henghui
    Yin, Chenyang
    Li, Huibin
    Pang, Shanmin
    SENSORS, 2022, 22 (14)
  • [32] GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks
    Almalioglu, Yasin
    Saputra, Muhamad Risqi U.
    de Gusmao, Pedro P. B.
    Markham, Andrew
    Trigoni, Niki
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 5474 - 5480
  • [33] SGANVO: Unsupervised Deep Visual Odometry and Depth Estimation With Stacked Generative Adversarial Networks
    Feng, Tuo
    Gu, Dongbing
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 4431 - 4437
  • [34] Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep SLAM
    Sheng, Lu
    Xu, Dan
    Ouyang, Wanli
    Wang, Xiaogang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 4301 - 4310
  • [35] Perceptual Enhancement for Unsupervised Monocular Visual Odometry
    Wang, Zhongyi
    Shen, Mengjiao
    Liu, Chengju
    Chen, Qijun
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2025, 23 (01) : 346 - 357
  • [36] Parametric Replay-Based Simulation of Underwater Acoustic Communication Channels
    Socheleau, Francois-Xavier
    Laot, Christophe
    Passerieux, Jean-Michel
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2015, 40 (04) : 796 - 806
  • [37] Deep visual unsupervised domain adaptation for classification tasks: a survey
    Madadi, Yeganeh
    Seydi, Vahid
    Nasrollahi, Kamal
    Hosseini, Reshad
    Moeslund, Thomas B.
    IET IMAGE PROCESSING, 2020, 14 (14) : 3283 - 3299
  • [38] Deep Direct Visual Odometry
    Zhao, Chaoqiang
    Tang, Yang
    Sun, Qiyu
    Vasilakos, Athanasios V.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 7733 - 7742
  • [39] Deep Event Visual Odometry
    Klenk, Simon
    Motzet, Marvin
    Koestler, Lukas
    Cremers, Daniel
    2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 739 - 749
  • [40] Validation of Replay-Based Underwater Acoustic Communication Channel Simulation
    Otnes, Roald
    van Walree, Paul A.
    Jenserud, Trond
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2013, 38 (04) : 689 - 700