Classification of Genus Three Zero-Divisor Graphs

被引:0
|
作者
Asir, Thangaraj [1 ]
Mano, Karuppiah [2 ]
Alsuraiheed, Turki [3 ]
机构
[1] Pondicherry Univ, Dept Math, Pondicherry 605014, India
[2] Fatima Coll, Dept Math, Madurai 625018, India
[3] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 12期
关键词
local ring; zero-divisor graph; graph embedding; RINGS;
D O I
10.3390/sym15122167
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we consider the problem of classifying commutative rings according to the genus number of its associating zero-divisor graphs. The zero-divisor graph of R, where R is a commutative ring with nonzero identity, denoted by Gamma(R), is the undirected graph whose vertices are the nonzero zero-divisors of R, and the distinct vertices x and y are adjacent if and only if xy=0. Here, we classify the local rings with genus three zero-divisor graphs.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Classification of rings with genus one zero-divisor graphs
    Wickham, Cameron
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (02) : 325 - 345
  • [2] Zero-divisor graphs of genus one
    Wang, Hsin-Ju
    JOURNAL OF ALGEBRA, 2006, 304 (02) : 666 - 678
  • [3] Zero-divisor graphs and zero-divisor functors
    Sbarra, Enrico
    Zanardo, Maurizio
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023,
  • [4] Classification of rings with projective zero-divisor graphs
    Chiang-Hsieh, Hung-Jen
    JOURNAL OF ALGEBRA, 2008, 319 (07) : 2789 - 2802
  • [5] CLASSIFICATION OF COMMUTATIVE ZERO-DIVISOR SEMIGROUP GRAPHS
    Demeyer, Lisa
    Jiang, Yunjiang
    Loszewski, Cleland
    Purdy, Erica
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (05) : 1481 - 1503
  • [6] CLASSIFICATION OF POSETS USING ZERO-DIVISOR GRAPHS
    Tavakkoli, Maryam
    Saeid, Arsham Borumand
    Poursalavati, Nosratollah Shajareh
    MATHEMATICA SLOVACA, 2018, 68 (01) : 21 - 32
  • [7] When zero-divisor graphs are divisor graphs
    Abu Osba, Emad
    Alkam, Osama
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (04) : 797 - 807
  • [8] Classification of non-local rings with genus two zero-divisor graphs
    Asir, T.
    Mano, K.
    SOFT COMPUTING, 2020, 24 (01) : 237 - 245
  • [9] Classification of non-local rings with genus two zero-divisor graphs
    T. Asir
    K. Mano
    Soft Computing, 2020, 24 : 237 - 245
  • [10] Characterizations of Three Classes of Zero-Divisor Graphs
    LaGrange, John D.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (01): : 127 - 137