An energy-efficient black widow-based adaptive VM placement approach for cloud computing

被引:0
|
作者
Goyal, Sahul [1 ]
Awasthi, Lalit Kumar [2 ]
机构
[1] Dr B R Ambedkar Natl Inst Technol, Jalandhar, Punjab, India
[2] Natl Inst Technol, Pauri, Uttarakhand, India
关键词
Cloud computing; VM migrations; VM consolidation; VM placement; VM selection; Black widow optimisation; VIRTUAL MACHINE PLACEMENT; CONSOLIDATION; MIGRATION; MANAGEMENT; ALGORITHM; POWER; TASK;
D O I
10.1007/s10586-023-04204-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The demand for cloud-based computation is increasing exponentially in the age of information technology virtualization, which is increasing data centre energy consumption and service level agreement (SLA) violations. This contributes to global warming and excessive load on existing infrastructure. As a result, it is critical to improve the resource utilisation of cloud data centres (CDCs). Virtual machine (VM) consolidation is the most effective method for optimising resource utilisation in CDCs. In this context, this research proposes the global optimal search-based meta-heuristic algorithm black widow adaptive VM placement (BWAVP) approach-based VM consolidation that combines energy conservation, resource utilisation and required quality of services with accurate VM-PM mapping. The investigation of the BWAVP approach shows that it reduces energy consumption by 18% on average when compared to other VM placement approaches, and reduces SLA violations, and VM migrations by more than 80%. Further, The research proposed a localized adaptive over and underutilisation host detection technique that further reduces energy consumption by 10% while maintaining the quality of services (QoSs) at the same level.
引用
收藏
页码:4659 / 4672
页数:14
相关论文
共 50 条
  • [41] An energy-efficient cuckoo search algorithm for virtual machine placement in cloud computing data centers
    Hamza Onoruoiza Salami
    Abubakar Bala
    Sadiq M. Sait
    Idris Ismail
    The Journal of Supercomputing, 2021, 77 : 13330 - 13357
  • [42] Energy Efficient Resource Scheduling through VM Consolidation in Cloud Computing
    Fayyaz, Ahmad
    Khan, Muhammad U. S.
    Khan, Samee U.
    2015 13TH INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT), 2015, : 65 - 70
  • [43] Energy-efficient data replication in cloud computing datacenters
    Boru, Dejene
    Kliazovich, Dzmitry
    Granelli, Fabrizio
    Bouvry, Pascal
    Zomaya, Albert Y.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2015, 18 (01): : 385 - 402
  • [44] Energy-Efficient Hybrid Framework for Green Cloud Computing
    Alarifi, Abdulaziz
    Dubey, Kalka
    Amoon, Mohammed
    Altameem, Torki
    Abd El-Samie, Fathi E.
    Altameem, Ayman
    Sharma, S. C.
    Nasr, Aida A.
    IEEE ACCESS, 2020, 8 (08): : 115356 - 115369
  • [45] Holistic Management for a more Energy-Efficient Cloud Computing
    Ayguade, Eduard
    Torres, Jordi
    ERCIM NEWS, 2010, (83): : 29 - 30
  • [46] An energy-efficient failure detector for vehicular cloud computing
    Liu, Jiaxi
    Wu, Zhibo
    Dong, Jian
    Wu, Jin
    Wen, Dongxin
    PLOS ONE, 2018, 13 (01):
  • [47] Energy-Efficient Resource Management in Mobile Cloud Computing
    Jin, Xiaomin
    Liu, Yuanan
    Fan, Wenhao
    Wu, Fan
    Tang, Bihua
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2018, E101B (04) : 1010 - 1020
  • [48] Energy-efficient data replication in cloud computing datacenters
    Dejene Boru
    Dzmitry Kliazovich
    Fabrizio Granelli
    Pascal Bouvry
    Albert Y. Zomaya
    Cluster Computing, 2015, 18 : 385 - 402
  • [49] Energy-Efficient Data Replication in Cloud Computing Datacenters
    Boru, Dejene
    Kliazovich, Dzmitry
    Granelli, Fabrizio
    Bouvry, Pascal
    Zomaya, Albert Y.
    2013 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2013, : 446 - 451
  • [50] Energy-efficient clustering protocol for WSN based on improved black widow optimization and fuzzy logic
    S. T. Sheriba
    D. Hevin Rajesh
    Telecommunication Systems, 2021, 77 : 213 - 230