A comprehensive review of COVID-19 detection with machine learning and deep learning techniques

被引:11
|
作者
Das, Sreeparna [1 ]
Ayus, Ishan [2 ]
Gupta, Deepak [3 ]
机构
[1] Natl Inst Technol Arunachal Pradesh, Dept Comp Sci & Engn, Jote 791113, Arunachal Prade, India
[2] Siksha O Anusandhan Deemed Univ, Dept Comp Sci & Engn, ITER, Bhubaneswar 751030, Orissa, India
[3] Motilal Nehru Natl Inst Technol Allahabad, Dept Comp Sci & Engn, Prayagraj 211004, Uttar Pradesh, India
关键词
COVID-19; Machine learning; Deep learning; CT-Scan; SARS-CoV-2; CLASSIFICATION; FEATURES; DATABASE;
D O I
10.1007/s12553-023-00757-z
中图分类号
R-058 [];
学科分类号
摘要
PurposeThe first transmission of coronavirus to humans started in Wuhan city of China, took the shape of a pandemic called Corona Virus Disease 2019 (COVID-19), and posed a principal threat to the entire world. The researchers are trying to inculcate artificial intelligence (Machine learning or deep learning models) for the efficient detection of COVID-19. This research explores all the existing machine learning (ML) or deep learning (DL) models, used for COVID-19 detection which may help the researcher to explore in different directions. The main purpose of this review article is to present a compact overview of the application of artificial intelligence to the research experts, helping them to explore the future scopes of improvement.MethodsThe researchers have used various machine learning, deep learning, and a combination of machine and deep learning models for extracting significant features and classifying various health conditions in COVID-19 patients. For this purpose, the researchers have utilized different image modalities such as CT-Scan, X-Ray, etc. This study has collected over 200 research papers from various repositories like Google Scholar, PubMed, Web of Science, etc. These research papers were passed through various levels of scrutiny and finally, 50 research articles were selected.ResultsIn those listed articles, the ML / DL models showed an accuracy of 99% and above while performing the classification of COVID-19. This study has also presented various clinical applications of various research. This study specifies the importance of various machine and deep learning models in the field of medical diagnosis and research.ConclusionIn conclusion, it is evident that ML/DL models have made significant progress in recent years, but there are still limitations that need to be addressed. Overfitting is one such limitation that can lead to incorrect predictions and overburdening of the models. The research community must continue to work towards finding ways to overcome these limitations and make machine and deep learning models even more effective and efficient. Through this ongoing research and development, we can expect even greater advances in the future.
引用
收藏
页码:679 / 692
页数:14
相关论文
共 50 条
  • [21] Practical Machine Learning Techniques for COVID-19 Detection Using Chest
    Mangalmurti, Yurananatul
    Wattanapongsakorn, Naruemon
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 34 (02): : 733 - 752
  • [22] Robust and efficient COVID-19 detection techniques: A machine learning approach
    Hasan, Md Mahadi
    Murtaz, Saba Binte
    Islam, Muhammad Usama
    Sadeq, Muhammad Jafar
    Uddin, Jasim
    PLOS ONE, 2022, 17 (09):
  • [23] Review on COVID-19 diagnosis models based on machine learning and deep learning approaches
    Alyasseri, Zaid Abdi Alkareem
    Al-Betar, Mohammed Azmi
    Abu Doush, Iyad
    Awadallah, Mohammed A.
    Abasi, Ammar Kamal
    Makhadmeh, Sharif Naser
    Alomari, Osama Ahmad
    Abdulkareem, Karrar Hameed
    Adam, Afzan
    Damasevicius, Robertas
    Mohammed, Mazin Abed
    Abu Zitar, Raed
    EXPERT SYSTEMS, 2022, 39 (03)
  • [24] Advanced Deep Learning Techniques for COVID-19
    Chang, Victor
    Abdel-Basset, Mohamed
    Iqbal, Rahat
    Wills, Gary
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (09) : 6476 - 6479
  • [25] A REVIEW ON EXTENSIVELY USED MACHINE LEARNING TECHNIQUES FOR THE PREDICTION OF COVID-19
    Mojahid, Hafiza Zoya
    Zain, Jasni Mohamad
    Basit, Abdul
    Yusoff, Marina
    Ali, Mushtaq
    SURANAREE JOURNAL OF SCIENCE AND TECHNOLOGY, 2024, 31 (01): : 030167 - 1
  • [26] COVID-19 Pneumonia Detection Using Optimized Deep Learning Techniques
    Bashar, Abul
    Latif, Ghazanfar
    Ben Brahim, Ghassen
    Mohammad, Nazeeruddin
    Alghazo, Jaafar
    DIAGNOSTICS, 2021, 11 (11)
  • [27] Detection of COVID-19 using deep learning techniques and classification methods
    Oguz, Cinare
    Yaganoglu, Mete
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (05)
  • [28] A Review on Deep Learning Techniques for the Diagnosis of Novel Coronavirus (COVID-19)
    Islam, Md. Milon
    Karray, Fakhri
    Alhajj, Reda
    Zeng, Jia
    IEEE ACCESS, 2021, 9 : 30551 - 30572
  • [29] Comprehensive review on machine learning and deep learning techniques for malware detection in android and IoT devicesComprehensive review on machine learning and deep learning techniques...W. Almobaideen et al.
    Wesam Almobaideen
    Orieb Abu Alghanam
    Muhammad Abdullah
    Syed Basit Hussain
    Umar Alam
    International Journal of Information Security, 2025, 24 (3)
  • [30] A comprehensive review of machine learning techniques on diabetes detection
    Toshita Sharma
    Manan Shah
    Visual Computing for Industry, Biomedicine, and Art, 4