Real-Time Traffic Sign Recognition Using Deep Learning

被引:1
|
作者
Shivayogi, Ananya Belagodu [1 ]
Dharmendra, Nehal Chakravarthy Matasagara [1 ]
Ramakrishna, Anala Maddur [2 ]
Subramanya, Kolala Nagaraju [3 ]
机构
[1] R V Coll Engn, Dept Comp Sci, Bangalore 560059, India
[2] R V Coll Engn, Dept Informat Sci, Bangalore 560059, India
[3] R V Coll Engn, Bangalore 560059, India
来源
关键词
DeepStream; Indian traffic sign dataset; NVIDIA Jetson Nano; traffic sign detection; YOLOv4;
D O I
10.47836/pjst.31.1.09
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Traffic Sign Recognition (TSR) is one of the most sought-after topics in computer vision, mostly due to the increasing scope and advancements in self-driving cars. In our study, we attempt to implement a TSR system that helps a driver stay alert during driving by providing information about the various traffic signs encountered. We will be looking at a working model that classifies the traffic signs and gives output in the form of an audio message. Our study will be focused on traffic sign detection and recognition on Indian roads. A dataset of Indian road traffic signs was created, based upon which our deep learning model will work. The developed model was deployed on NVIDIA Jetson Nano using YOLOv4 architecture, giving an accuracy in the range of 54.68-76.55% on YOLOv4 architecture. The YOLOv4-Tiny model with DeepStream implementation achieved an FPS of 32.5, which is on par with real-time detection requirements.
引用
收藏
页码:137 / 148
页数:12
相关论文
共 50 条
  • [31] Simultaneous Traffic Sign Recognition and Real-Time Communication using Dual Camera in ITS
    Hasan, Moh Khalid
    Shahjalal, Md.
    Chowdhury, Mostafa Zaman
    Le, Nam Tuan
    Jang, Yeong Min
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), 2019, : 517 - 520
  • [32] Real-Time Accident Detection in Traffic Surveillance Using Deep Learning
    Ghahremannezhad, Hadi
    Shi, Hang
    Liu, Chengjun
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST 2022), 2022,
  • [33] Indian traffic sign detection and recognition using deep learning
    Megalingam, Rajesh Kannan
    Thanigundala, Kondareddy
    Musani, Sreevatsava Reddy
    Nidamanuru, Hemanth
    Gadde, Lokesh
    INTERNATIONAL JOURNAL OF TRANSPORTATION SCIENCE AND TECHNOLOGY, 2023, 12 (03) : 683 - 699
  • [34] RIECNN: real-time image enhanced CNN for traffic sign recognition
    Reem Abdel-Salam
    Rana Mostafa
    Ahmed H. Abdel-Gawad
    Neural Computing and Applications, 2022, 34 : 6085 - 6096
  • [35] Real-time Detection and Recognition of Live Panoramic Traffic Signs Based on Deep Learning
    Meng, Xiangsong
    Zhang, Xiangli
    Yan, Kun
    Zhang, Hongmei
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 584 - 588
  • [36] Real-Time Traffic Sign Recognition Based on Shape and Color Classification
    Caglayan, Tughan
    Ahmadzay, Habibullah
    Kofraz, Gokhan
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 1897 - 1900
  • [37] RESOURCE EFFICIENT HARDWARE IMPLEMENTATION FOR REAL-TIME TRAFFIC SIGN RECOGNITION
    Weng, Huai-Mao
    Chiu, Ching-Te
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1120 - 1124
  • [38] Real-Time Traffic Sign Recognition Based on Efficient CNNs in the Wild
    Li, Jia
    Wang, Zengfu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (03) : 975 - 984
  • [39] Embedded Real-Time System for Traffic Sign Recognition on ARM Processor
    Faiedh, Hassene
    Farhat, Wajdi
    Hamdi, Sabrine
    Souani, Chokri
    INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2020, 11 (02) : 77 - 98
  • [40] Real-time embedded system for traffic sign recognition based on ZedBoard
    Farhat, Wajdi
    Faiedh, Hassene
    Souani, Chokri
    Besbes, Kamel
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2019, 16 (05) : 1813 - 1823