Low-Rank Tensor Based Proximity Learning for Multi-View Clustering

被引:66
|
作者
Chen, Man-Sheng [1 ,2 ,3 ]
Wang, Chang-Dong [1 ,2 ,3 ]
Lai, Jian-Huang [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
[2] Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Minist Educ, Key Lab Machine Intelligence & Adv Comp, Beijing 100816, Peoples R China
关键词
Tensors; Correlation; Clustering methods; Kernel; Data structures; Sparse matrices; Semantics; Multi-view clustering; low-rank tensor representation; consensus indicator; adaptive confidences; GRAPH;
D O I
10.1109/TKDE.2022.3151861
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph-oriented multi-view clustering methods have achieved impressive performances by employing relationships and complex structures hidden in multi-view data. However, most of them still suffer from the following two common problems. (1) They target at studying a common representation or pairwise correlations between views, neglecting the comprehensiveness and deeper higher-order correlations among multiple views. (2) The prior knowledge of view-specific representation can not be taken into account to obtain the consensus indicator graph in a unified graph construction and clustering framework. To deal with these problems, we propose a novel Low-rank Tensor Based Proximity Learning (LTBPL) approach for multi-view clustering, where multiple low-rank probability affinity matrices and consensus indicator graph reflecting the final performances are jointly studied in a unified framework. Specifically, multiple affinity representations are stacked in a low-rank constrained tensor to recover their comprehensiveness and higher-order correlations. Meanwhile, view-specific representation carrying different adaptive confidences is jointly linked with the consensus indicator graph. Extensive experiments on nine real-world datasets indicate the superiority of LTBPL compared with the state-of-the-art methods.
引用
收藏
页码:5076 / 5090
页数:15
相关论文
共 50 条
  • [41] Robust multi-view low-rank embedding clustering
    Dai, Jian
    Song, Hong
    Luo, Yunzhi
    Ren, Zhenwen
    Yang, Jian
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (10): : 7877 - 7890
  • [42] Deep Low-Rank Multi-View Subspace Clustering
    Yan J.
    Li Z.
    Tang Q.
    Zhou Z.
    Li, Zhongyu, 1600, Xi'an Jiaotong University (55): : 125 - 135
  • [43] Multiple kernel-based anchor graph coupled low-rank tensor learning for incomplete multi-view clustering
    Wang, Senhong
    Cao, Jiangzhong
    Lei, Fangyuan
    Jiang, Jianjian
    Dai, Qingyun
    Ling, Bingo Wing-Kuen
    APPLIED INTELLIGENCE, 2023, 53 (04) : 3687 - 3712
  • [44] Multi-view low-rank sparse subspace clustering
    Brbic, Maria
    Kopriva, Ivica
    PATTERN RECOGNITION, 2018, 73 : 247 - 258
  • [45] Low-rank discrete multi-view spectral clustering
    Yun, Yu
    Li, Jing
    Gao, Quanxue
    Yang, Ming
    Gao, Xinbo
    NEURAL NETWORKS, 2023, 166 : 137 - 147
  • [46] Effective Incomplete Multi-View Clustering via Low-Rank Graph Tensor Completion
    Yu, Jinshi
    Duan, Qi
    Huang, Haonan
    He, Shude
    Zou, Tao
    MATHEMATICS, 2023, 11 (03)
  • [47] Enhanced Tensor Low-Rank and Sparse Representation Recovery for Incomplete Multi-View Clustering
    Zhang, Chao
    Li, Huaxiong
    Lv, Wei
    Huang, Zizheng
    Gao, Yang
    Chen, Chunlin
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 11174 - 11182
  • [48] Joint local smoothness and low-rank tensor representation for robust multi-view clustering
    Du, Yangfan
    Lu, Gui-Fu
    PATTERN RECOGNITION, 2025, 157
  • [49] IMC-NLT: Incomplete multi-view clustering by NMF and low-rank tensor
    Liu, Zhenjiao
    Chen, Zhikui
    Li, Yue
    Zhao, Liang
    Yang, Tao
    Farahbakhsh, Reza
    Crespi, Noel
    Huang, Xiaodi
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 221
  • [50] Low-rank tensor approximation with local structure for multi-view intrinsic subspace clustering
    Fu, Lele
    Yang, Jinghua
    Chen, Chuan
    Zhang, Chuanfu
    INFORMATION SCIENCES, 2022, 606 : 877 - 891