Jamming and Eavesdropping Defense Scheme Based on Deep Reinforcement Learning in Autonomous Vehicle Networks

被引:67
|
作者
Yao, Yu [1 ]
Zhao, Junhui [1 ,2 ]
Li, Zeqing [1 ]
Cheng, Xu [3 ]
Wu, Lenan [4 ]
机构
[1] East China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
[2] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[3] Sun Yat sen Univ, Dept Elect & Commun Engn, Shenzhen 518000, Peoples R China
[4] Southeast Univ, Coll Informat Sci & Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Eavesdropping; Jamming; Vehicle dynamics; Target tracking; Wireless communication; Vehicular ad hoc networks; Safety; Eavesdropping defense; channel selection; power control; deep Q-network (DQN); connected and autonomous vehicles (CAVs); deep reinforcement learning (DRL); JOINT RADAR; CAPACITY; SYSTEM;
D O I
10.1109/TIFS.2023.3236788
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As a legacy from conventional wireless services, illegal eavesdropping is regarded as one of the critical security challenges in Connected and Autonomous Vehicles (CAVs) network. Our work considers the use of Distributed Kalman Filtering (DKF) and Deep Reinforcement Learning (DRL) techniques to improve anti-eavesdropping communication capacity and mitigate jamming interference. Aiming to improve the security performance against smart eavesdropper and jammer, we first develop a DKF algorithm that is capable of tracking the attacker more accurately by sharing state estimates among adjacent nodes. Then, a design problem for controlling transmission power and selecting communication channel is established while ensuring communication quality requirements of the authorized vehicular user. Since the eavesdropping and jamming model is uncertain and dynamic, a hierarchical Deep Q-Network (DQN)-based architecture is developed to design the anti-eavesdropping power control and possibly channel selection policy. Specifically, the optimal power control scheme without prior information of the eavesdropping behavior can be quickly achieved first. Based on the system secrecy rate assessment, the channel selection process is then performed when necessary. Simulation results confirm that our jamming and eavesdropping defense technique enhances the secrecy rate as well as achievable communication rate compared with currently available techniques.
引用
收藏
页码:1211 / 1224
页数:14
相关论文
共 50 条
  • [21] Autonomous Vehicle Fuel Economy Optimization with Deep Reinforcement Learning
    Kim, Hyunkun
    Pyeon, Hyeongoo
    Park, Jong Sool
    Hwang, Jin Young
    Lim, Sejoon
    ELECTRONICS, 2020, 9 (11) : 1 - 19
  • [22] A Method of Deep Reinforcement Learning for Simulation of Autonomous Vehicle Control
    Anh Huynh
    Ba-Tung Nguyen
    Hoai-Thu Nguyen
    Sang Vu
    Hien Nguyen
    ENASE: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON EVALUATION OF NOVEL APPROACHES TO SOFTWARE ENGINEERING, 2021, : 372 - 379
  • [23] Reinforcement Learning for Autonomous Vehicle Movements in Wireless Sensor Networks
    Afifi, Haitham
    Ramaswamy, Arunselvan
    Karl, Holger
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [24] Deep Reinforcement Learning Based Optimal Trajectory Tracking Control of Autonomous Underwater Vehicle
    Yu, Runsheng
    Shi, Zhenyu
    Huang, Chaoxing
    Li, Tenglong
    Ma, Qiongxiong
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 4958 - 4965
  • [25] Longitudinal Hierarchical Control of Autonomous Vehicle Based on Deep Reinforcement Learning and PID Algorithm
    Ma, Jialu
    Zhang, Pingping
    Li, Yixian
    Gao, Yuhang
    Zhao, Jiandong
    JOURNAL OF ADVANCED TRANSPORTATION, 2024, 2024
  • [26] Evaluation of a Deep-Reinforcement-Learning-based Controller for the Control of an Autonomous Underwater Vehicle
    Sola, Yoann
    Chaffre, Thomas
    le Chenadec, Gilles
    Sammut, Karl
    Clement, Benoit
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [27] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC, 2022, 2022-July
  • [28] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [29] Deceiving Reactive Jamming in Dynamic Wireless Sensor Networks: A Deep Reinforcement Learning Based Approach
    Zhang, Chen
    Mao, Tianqi
    Xiao, Zhenyu
    Liu, Ruiqi
    Xia, Xiang-Gen
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 4455 - 4460
  • [30] Deep-Reinforcement-Learning-Based IRS for Cooperative Jamming Networks Under Edge Computing
    Li, Tengyue
    Wen, Hong
    Jiang, Yixin
    Tang, Jie
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (10): : 8996 - 9006