Gearbox fault diagnosis method based on improved semi-supervised MTDL and GAF

被引:1
|
作者
Zhao, Peng [1 ]
Pang, Xinyu [1 ,4 ]
Li, Feng [2 ]
Lu, Kaibo [1 ]
Hu, Shouxin [3 ]
机构
[1] Taiyuan Univ Technol, Sch Mech & Vehicle Engn, Taiyuan, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Sch Aeronaut & Astronaut, Taiyuan, Peoples R China
[3] CCTEG Taiyuan Res Inst Co Ltd, Taiyuan, Peoples R China
[4] Taiyuan Univ Technol, Coll Mech & Vehicle Engn, Taiyuan 030024, Shanxi, Peoples R China
来源
MEASUREMENT & CONTROL | 2024年 / 57卷 / 08期
基金
中国国家自然科学基金;
关键词
GAF image encoding; gearbox fault diagnosis; semi-supervised; deep learning; WideResNet; CLASSIFICATION; TRANSFORM; MATRIX;
D O I
10.1177/00202940241230488
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Aiming at the problem that it takes a long time and high cost to obtain complete labeled data under intelligent fault diagnosis and unlabeled data is not used. This paper proposes an improved semi-supervised mean teacher deep learning (MTDL) and Gramian angle field (GAF) fusion diagnostic method. This method fully utilizes a small number of labeled samples and a large number of unlabeled samples to deeply mine invisible fault features and potential physical correlations. At the same time, it solves the problem of losing the inter-data correlation structure when one-dimensional time series signals are used as inputs for neural networks. The GAF-MTDL method uses consistency regularization and modifies the network structure in the mean teacher algorithm into a semi-supervised deep learning model enhanced by WideResNet. The experimental results show that the proposed GAF-MTDL method saves a lot of manual labeling costs, improves the recognition accuracy and generalization ability, and can achieve excellent prediction accuracy with very little labeled data. In the end, the accuracy of planetary gear fault identification reached 98.22% under the labeling rate of 20%, and the accuracy of fault identification reached 99.98% through the verification of the bearing data set of Case Western Reserve University. The value of this research is to bring an efficient and low-cost technology to the field of industrial intelligent fault diagnosis, which can significantly improve the accuracy of fault identification.
引用
收藏
页码:1181 / 1193
页数:13
相关论文
共 50 条
  • [31] A Novel Fault Diagnosis Method Based on Semi-supervised Max-margin Dictionary Learning
    Wang W.
    Tao J.
    Liu Z.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2019, 39 (05): : 1068 - 1074
  • [32] Open-Set Fault Diagnosis Method for Industrial Process Based on Semi-supervised Learning
    Liu, Jiaren
    Song, Hong
    Wang, Jianguo
    INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2022), PT IV, 2022, 13458 : 103 - 112
  • [33] Engine wear fault diagnosis based on improved semi-supervised fuzzy c-means clustering
    Xu C.
    Zhang P.
    Ren G.
    Fu J.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2011, 47 (17): : 55 - 60
  • [34] An improved EM-based Semi-supervised Learning Method
    Fan, Xinghua
    Guo, Zhiyi
    Ma, Houfeng
    2009 INTERNATIONAL JOINT CONFERENCE ON BIOINFORMATICS, SYSTEMS BIOLOGY AND INTELLIGENT COMPUTING, PROCEEDINGS, 2009, : 529 - 532
  • [35] A semi-supervised approach to fault diagnosis for chemical processes
    Monroy, Isaac
    Benitez, Raul
    Escudero, Gerard
    Graells, Moises
    COMPUTERS & CHEMICAL ENGINEERING, 2010, 34 (05) : 631 - 642
  • [36] Semi-supervised learning and condition fusion for fault diagnosis
    Yuan, Jin
    Liu, Xuemei
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 38 (02) : 615 - 627
  • [37] A kind of Semi-supervised Classifying Method Research for Power Transformer Fault Diagnosis
    Chen, Siping
    PROCEEDINGS OF 2016 IEEE 7TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2016), 2016, : 1013 - 1016
  • [38] Semi-Supervised Transfer Learning Method for Bearing Fault Diagnosis with Imbalanced Data
    Zong, Xia
    Yang, Rui
    Wang, Hongshu
    Du, Minghao
    You, Pengfei
    Wang, Su
    Su, Hao
    MACHINES, 2022, 10 (07)
  • [39] The Turnout Abnormality Diagnosis Based on Semi-Supervised Learning Method
    Shi, Zeng Shu
    Du, Yiman
    Du, Tao
    Shan, Guochao
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2020, 30 (07) : 961 - 976
  • [40] Single and simultaneous fault diagnosis of gearbox via a semi-supervised and high-accuracy adversarial learning framework
    Liang, Pengfei
    Deng, Chao
    Wu, Jun
    Yang, Zhixin
    Zhu, Jinxuan
    Zhang, Zihan
    KNOWLEDGE-BASED SYSTEMS, 2020, 198