Partial adversarial domain adaptation by dual-domain alignment for fault diagnosis of rotating machines

被引:6
|
作者
Wang, Xuan [1 ]
She, Bo [1 ,3 ]
Shi, Zhangsong [1 ]
Sun, Shiyan [1 ]
Qin, Fenqi [2 ]
机构
[1] Naval Univ Engn, Dept Weaponry Engn, Wuhan 430000, Peoples R China
[2] 713 Res Inst China Shipbldg, Zhenzhou 450000, Peoples R China
[3] Naval Univ Engn, Dept Weaponry Engn, 717 Jiefang Ave, Wuhan City, Hubei Prov, Peoples R China
关键词
Partial domain adaptation (PDA); Fault diagnosis (FD); Dual-domain alignment; Rotating machines; TRANSFER NETWORK;
D O I
10.1016/j.isatra.2022.11.021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Domain adaptation (DA) techniques have succeeded in solving domain shift problem for fault diagnosis (FD), where the research assumption is that the target domain (TD) and source domain (SD) share identical label spaces. However, when the SD label spaces subsume the TD, heterogeneity occurs, which is a partial domain adaptation (PDA) problem. In this paper, we propose a dual-domain alignment approach for partial adversarial DA (DDA-PADA) for FD, including (1) traditional domain-adversarial neural network (DANN) modules (feature extractors, feature classifiers and a domain discriminator); (2) a SD alignment (SDA) module designed based on the feature alignment of SD extracted in two stages; and (3) a cross-domain alignment (CDA) module designed based on the feature alignment of SD and TD extracted in the second stage. Specifically, SDA and CDA are implemented by a unilateral feature alignment approach, which maintains the feature consistency of the SD and attempts to mitigate cross-domain variation by correcting the feature distribution of TD, achieving feature alignment from a dual-domain perspective. Thus, DDA-PADA can effectively align the SD and TD without affecting the feature distribution of SD. Experimental results obtained on two rotating mechanical datasets show that DDA-PADA exhibits satisfactory performance in handling PDA problems. The various analysis results validate the advantages of DDA-PADA.(c) 2022 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:455 / 467
页数:13
相关论文
共 50 条
  • [31] Domain compensatory adversarial networks for partial domain adaptation
    Junchu Huang
    Pengyu Zhang
    Zhiheng Zhou
    Kefeng Fan
    Multimedia Tools and Applications, 2021, 80 : 11255 - 11272
  • [32] Domain Adversarial Reinforcement Learning for Partial Domain Adaptation
    Chen, Jin
    Wu, Xinxiao
    Duan, Lixin
    Gao, Shenghua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (02) : 539 - 553
  • [33] Domain compensatory adversarial networks for partial domain adaptation
    Huang, Junchu
    Zhang, Pengyu
    Zhou, Zhiheng
    Fan, Kefeng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (07) : 11255 - 11272
  • [34] Domain adversarial tangent subspace alignment for explainable domain adaptation
    Raab, Christoph
    Roeder, Manuel
    Schleif, Frank-Michael
    NEUROCOMPUTING, 2022, 506 : 418 - 429
  • [35] Dual Structural Consistent Partial Domain Adaptation Network for Intelligent Machinery Fault Diagnosis
    Yu, Kun
    Wang, Xuesong
    Cheng, Yuhu
    Feng, Ke
    Zhang, Yongchao
    Xing, Bin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 13
  • [36] Adversarial Reweighting for Partial Domain Adaptation
    Gu, Xiang
    Yu, Xi
    Yang, Yan
    Sun, Jian
    Xu, Zongben
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [37] Instance Weighting-Based Partial Domain Adaptation for Intelligent Fault Diagnosis of Rotating Machinery
    Li, Yuqing
    Dong, Yunjia
    Xu, Minqiang
    Liu, Pengpeng
    Wang, Rixin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [38] CROSS-WORKING CONDITIONS FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON PARTIAL DOMAIN ADAPTATION
    Ma T.
    Sun L.
    Han B.
    Shi Y.
    Deng A.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (06): : 479 - 486
  • [39] Discriminative manifold domain adaptation for cross-domain fault diagnosis of rotating machineries
    Qin, Yi
    Wang, Zhengyi
    Qian, Quan
    Wang, Yi
    Luo, Jun
    KNOWLEDGE-BASED SYSTEMS, 2024, 285
  • [40] Interactive dual adversarial neural network framework: An open-set domain adaptation intelligent fault diagnosis method of rotating machinery
    Mao, Gang
    Li, Yongbo
    Jia, Sixiang
    Noman, Khandaker
    MEASUREMENT, 2022, 195