A surfactant modified solid amine adsorbent to enhance CO2 adsorption performance

被引:8
|
作者
Chen, Yangguan [1 ]
Zhang, Jinrui [1 ]
Liu, Haorui [1 ]
Wang, Xiaoqiong [1 ]
Chen, Shuixia [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Chem, PCFM Lab, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Mat Sci Inst, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
Cryogel; CO; 2; adsorption; Solid amine adsorbent; Surfactant; POLYETHYLENE-GLYCOL; MESOPOROUS SILICA; CAPTURE; CARBON; SORBENTS; PEG; IMPREGNATION; SBA-15; AIR;
D O I
10.1016/j.colsurfa.2023.132323
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-amine adsorbents are promising CO2 post-combustion adsorption materials to mitigate global warming. As one of the most important evaluation criteria, the CO2 adsorption capacity of the adsorbent was determined by both kinetic and thermodynamic factors, while high temperature is good for mass transfer and low temperature is advantageous for equilibrium to move towards adsorption. In this study, surfactants were added into polyethylenimine (PEI) cryogel to enhance mass transfer and reduce the adsorption temperature, thereby promoting its adsorption capacity. With the addition of polyethylene glycol (PEG200), the CO2 adsorption capacity reached a maximum value of 6.48 mmol/g at 65 degrees C, and the amine efficiency reached a maximum value of 0.52 mol C/ mol N at 45 degrees C. Further characterization revealed that the addition of PEG not only enhanced the mass transfer, but also changed the chemisorption mechanisms, which were very similar to the effects of water. Besides, PEG would form hydrogen bonds with the PEI polymer network and showed stable regeneration capacity, thereby exhibiting a greater application potential.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] CO2 adsorption performance for amine grafted particulate silica aerogels
    Lin, Y.S. (jerry.lin@asu.edu), 1600, Elsevier B.V., Netherlands (254):
  • [42] Adsorption of CO2 by a novel zeolite doped amine modified ternary aerogels
    Wang, Jian
    Zhou, Yunlong
    Hu, Xiaotian
    ENVIRONMENTAL RESEARCH, 2022, 214
  • [43] Suitability of a Solid Amine Sorbent for CO2 Capture by Pressure Swing Adsorption
    Ebner, A. D.
    Gray, M. L.
    Chisholm, N. G.
    Black, Q. T.
    Mumford, D. D.
    Nicholson, M. A.
    Ritter, J. A.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (09) : 5634 - 5641
  • [44] Kinetic modeling of CO2 adsorption on an amine-functionalized solid sorbent
    Jung, Wonho
    Park, Junhyung
    Lee, Kwang Soon
    CHEMICAL ENGINEERING SCIENCE, 2018, 177 : 122 - 131
  • [45] CO2 adsorption on amine- and K2CO3-modified activated carbons
    Rangsunvigit, Pramoch
    Pichaichanlert, Tawpath
    Kulprathipanja, Santi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [46] Amine-modified SBA-15(P): A promising adsorbent for CO2 capture
    Zhang, Guojie
    Zhao, Peiyu
    Hao, Lanxia
    Xu, Ying
    JOURNAL OF CO2 UTILIZATION, 2018, 24 : 22 - 33
  • [47] Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces
    Yu, Jiaguo
    Le, Yao
    Cheng, Bei
    RSC ADVANCES, 2012, 2 (17) : 6784 - 6791
  • [48] Development of Amine-Modified Solid Sorbents for Postcombustion CO2 Capture
    Watabe, Tsuyoshi
    Nishizaka, Yosuke
    Kazama, Shingo
    Yogo, Katsunori
    GHGT-11, 2013, 37 : 199 - 204
  • [49] Study of solid amine CO2 sorbents based on the modified fly ash
    Ji, Yinglu
    Song, Huiping
    Cheng, Fangqin
    Zheng, Nan
    Wang, Xuming
    RENEWABLE ENERGY AND ENVIRONMENTAL TECHNOLOGY, PTS 1-6, 2014, 448-453 : 174 - 177
  • [50] CO2 adsorption performance of modified activated carbon fibers
    Li, Cancan
    Zhu, Jiamei
    Ren, Ting
    Guo, Bin
    Yan, Hongfang
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2018, 37 (09): : 3520 - 3527