Spatial and Temporal Attention-Enabled Transformer Network for Multivariate Short-Term Residential Load Forecasting

被引:11
|
作者
Zhao, Hongshan [1 ]
Wu, Yuchen [1 ]
Ma, Libo [1 ]
Pan, Sichao [1 ]
机构
[1] North China Elect Power Univ, Sch Elect & Elect Engn, Baoding 071003, Peoples R China
关键词
Load modeling; Load forecasting; Predictive models; Autocorrelation; Transformers; Market research; Probabilistic logic; Monte Carlo (MC) dropout; probabilistic forecasting; residential load forecasting; spatial-temporal correlation; transformer; NEURAL-NETWORK; PREDICTION;
D O I
10.1109/TIM.2023.3305655
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Short-term residential load forecasting (STRLF) is critical for the safe and stable operation of the microgrid system. Due to shred conditions such as temperature and holiday impacts, households in the same region may exhibit similar consumption patterns. However, existing STRLF methods focus mainly on exploring the temporal patterns of a single household; the spatial correlations between multiple households are generally ignored. To address this challenge, a spatial and temporal attention-enabled transformer model, STformer, is proposed to extract the dynamic spatial and nonlinear temporal correlations between residential units and perform joint predictions of multivariate residential loads. The combination of improved temporal attention and spatial attention mechanisms allows the proposed method to capture complex spatial and temporal factors without prior geographical information. The Monte Carlo (MC) dropout method is utilized to further extend the proposed model to multitask residential probabilistic load forecasting. Compared to Transformer, the proposed model improves the point forecast accuracy of individual New York (NY), USA, and Los Angeles (LA), USA, by 16.54% and 6.95%, and the combined point forecast accuracy by 22.46% and 11.86%, respectively. In addition, the proposed model improved the residential probabilistic load prediction accuracy by 10.21% and 11.07% in NY and LA, respectively, compared to SGPR.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Short-term load forecasting using spatial-temporal embedding graph neural network
    Wei, Chuyuan
    Pi, Dechang
    Ping, Mingtian
    Zhang, Haopeng
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 225
  • [12] Spatial-temporal learning structure for short-term load forecasting
    Ganjouri, Mahtab
    Moattari, Mazda
    Forouzantabar, Ahmad
    Azadi, Mohammad
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2023, 17 (02) : 427 - 437
  • [13] Probabilistic Multienergy Load Forecasting Based on Hybrid Attention-Enabled Transformer Network and Gaussian Process-Aided Residual Learning
    Zhao, Pengfei
    Hu, Weihao
    Cao, Di
    Zhang, Zhenyuan
    Huang, Yuehui
    Dai, Longcheng
    Chen, Zhe
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (06) : 8379 - 8393
  • [14] Multi-temporal-spatial-scale temporal convolution network for short-term load forecasting of power systems
    Yin, Linfei
    Xie, Jiaxing
    APPLIED ENERGY, 2021, 283
  • [15] Temporal Convolutional Network Based Short-term Load Forecasting Model
    Gu, Kaiming
    Jia, Li
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 584 - 589
  • [16] A Transformer Based Method with Wide Attention Range for Enhanced Short-term Load Forecasting
    Jiang, Bozhen
    Liu, Yi
    Geng, Hua
    Zeng, Huarong
    Ding, Jiangqiao
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1684 - 1690
  • [17] Short-term Load Forecasting by Long- and Short-term Temporal Networks With Attention Based on Modal Decomposition
    Qiao S.
    Wang L.
    Zhang P.
    Yan Q.
    Wang G.
    Dianwang Jishu/Power System Technology, 2022, 46 (10): : 3940 - 3951
  • [18] Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network
    Kong, Weicong
    Dong, Zhao Yang
    Jia, Youwei
    Hill, David J.
    Xu, Yan
    Zhang, Yuan
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (01) : 841 - 851
  • [19] Short-term load forecasting based on CEEMDAN and Transformer
    Ran, Peng
    Dong, Kun
    Liu, Xu
    Wang, Jing
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 214
  • [20] Short-Term Load Forecasting Based on the Transformer Model
    Zhao, Zezheng
    Xia, Chunqiu
    Chi, Lian
    Chang, Xiaomin
    Li, Wei
    Yang, Ting
    Zomaya, Albert Y.
    INFORMATION, 2021, 12 (12)