Shattered pellet technology development in the ITER DMS test laboratory

被引:12
|
作者
Zoletnik, S. [1 ]
Walcz, E. [1 ]
Jachmich, S. [2 ]
Kruezi, U. [2 ]
Lehnen, M. [2 ]
Anda, G. [1 ]
Szabolics, T. [1 ]
Szepesi, T. [1 ]
Bartok, G. [1 ]
Cseh, G. [1 ]
Boros, Z. [3 ]
Dunai, D. [1 ]
Gardonyi, G. [4 ]
Hakl, J. [5 ]
Hegedus, S. [1 ]
Katona, I. [1 ]
Kovacs, A. [1 ]
Kocsis, G. [1 ]
Lengyel, M. [3 ]
Meszaros, S. [6 ]
Nagy, D. [1 ]
Oravecz, D. [1 ]
Poszovecz, L. [1 ]
Refy, D. [1 ]
Vad, K. [5 ]
Vecsei, M. [1 ]
机构
[1] Ctr Energy Res, Budapest, Hungary
[2] ITER Org, St Paul Les Durance, France
[3] H Ion Kft, Budapest, Hungary
[4] Budapest Univ Technol & Econ, Budapest, Hungary
[5] Inst Nucl Res, Debrecen, Hungary
[6] VTMT Kft, Debrecen, Hungary
关键词
D O I
10.1016/j.fusengdes.2023.113701
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A support laboratory for the ITER Disruption Mitigation System has been set up at the Centre for Energy Research, Budapest, Hungary. It consists of a cryogenic pellet injector capable of producing, launching and shattering 19 x 38 and 28.5 x 55 mm (d x L) cryogenic pellets. Up to now more than 300 pellets made of hydrogen, deuterium, neon and mixtures thereof have been formed and launched . Nearly all pellets flew through the 4 m long, 60 mm diameter flight tube, which represents the ITER flight path between the propellant recovery chamber and the shattering head. Initial analysis of the fragment plumes produced by an open shattering head indicate that they extend 3 times further parallel to the shattering plate than perpendicularly to it. The results show that the large pellets needed for the ITER SPI system can be produced and launched.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] TWIN-SCREW EXTRUDER DEVELOPMENT FOR THE ITER PELLET INJECTION SYSTEM
    Meitner, S. J.
    Baylor, L. R.
    Combs, S. K.
    Fehling, D. T.
    McGill, J. M.
    Rasmussen, D. A.
    Leachman, J. W.
    2009 23RD IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 2009, : 493 - +
  • [32] Current status of technology development for fabrication of Indian Test Blanket Module (TBM) of ITER
    Jayakumar, T.
    Kumar, E. Rajendra
    FUSION ENGINEERING AND DESIGN, 2014, 89 (7-8) : 1562 - 1567
  • [33] Fusion technology development for ITER in JAERI
    Seki, M
    Tsuji, H
    Ohara, Y
    Akiba, M
    Okumura, Y
    FUSION TECHNOLOGY, 2001, 39 (02): : 367 - 373
  • [34] GRANULATION TEST RESULTS OF MICRO PELLET (DEVELOPMENT OF PRODUCING PROCESS FOR MICRO PELLET - I).
    Yamamoto, Ryoji
    Nakajima, Ryuichi
    Yanaka, Hideomi
    Hattori, Michinori
    Komatsu, Osamu
    Takai, Akira
    Nagano, Seiki
    Transactions of the Iron and Steel Institute of Japan, 1986, 26 (08)
  • [35] DEVELOPMENT OF A NEW MICRO CHP PELLET STOVE TECHNOLOGY
    Obernberger, Ingwald
    Weiss, Gerhard
    Koessl, Manuel
    PAPERS OF THE 25TH EUROPEAN BIOMASS CONFERENCE, 2017, : 344 - 350
  • [36] Development of a new micro CHP pellet stove technology
    Obernberger, Ingwald
    Weiss, Gerhard
    Koessl, Manuel
    BIOMASS & BIOENERGY, 2018, 116 : 198 - 204
  • [37] The European breeding blankets development and the test strategy in ITER
    Poitevin, Y
    Boccaccini, LV
    Cardella, A
    Giancarli, L
    Meyder, R
    Diegele, E
    Laesser, R
    Benamati, G
    FUSION ENGINEERING AND DESIGN, 2005, 75-79 : 741 - 749
  • [38] Development and test of the ITER conductor joints for the Central Solenoid
    Martovetsky, N.
    Manahan, R.
    Jayakumar, R.
    Michael, P.
    Gung, C.Y.
    Minervini, J.
    Randall, R.
    Zhukovsky, A.
    Fusion Technology, 1998, 34 (3 pt 2): : 808 - 814
  • [39] Introduction to Reactor Structure Laboratory - Remote Maintenance Development for ITER -
    Tada, Eisuke
    Journal of Robotics and Mechatronics, 1998, 10 (02):
  • [40] Materials development for ITER shielding and test blanket in China
    Chen, J. M.
    Wu, J. H.
    Liu, X.
    Wang, P. H.
    Wang, Z. H.
    Li, Z. N.
    Wang, X. S.
    Zhang, P. C.
    Zhang, N. M.
    Fu, H. Y.
    Liu, D. H.
    JOURNAL OF NUCLEAR MATERIALS, 2011, 417 (1-3) : 81 - 84