Spoof Trace Disentanglement for Generic Face Anti-Spoofing

被引:20
|
作者
Liu, Yaojie [1 ]
Liu, Xiaoming [1 ]
机构
[1] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA
关键词
Face recognition; Three-dimensional displays; Task analysis; Faces; Feature extraction; Deep learning; Data models; face anti-spoofing; low-level vision; spoof traces; synthesis; weak supervision; CAMERA MODEL;
D O I
10.1109/TPAMI.2022.3176387
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prior studies show that the key to face anti-spoofing lies in the subtle image patterns, termed "spoof trace," e.g., color distortion, 3D mask edge, and Moire pattern. Spoof detection rooted on those spoof traces can improve not only the model's generalization but also the interpretability. Yet, it is a challenging task due to the diversity of spoof attacks and the lack of ground truth for spoof traces. In this work, we propose a novel adversarial learning framework to explicitly estimate the spoof related patterns for face anti-spoofing. Inspired by the physical process, spoof faces are disentangled into spoof traces and the live counterparts in two steps: additive step and inpainting step. This two-step modeling can effectively narrow down the searching space for adversarial learning of spoof trace. Based on the trace modeling, the disentangled spoof traces can be utilized to reversely construct new spoof faces, which is used as data augmentation to effectively tackle long-tail spoof types. In addition, we apply frequency-based image decomposition in both the input and disentangled traces to better reflect the low-level vision cues. Our approach demonstrates superior spoof detection performance on 3 testing scenarios: known attacks, unknown attacks, and open-set attacks. Meanwhile, it provides a visually-convincing estimation of the spoof traces. Source code and pre-trained models will be publicly available upon publication.
引用
收藏
页码:3813 / 3830
页数:18
相关论文
共 50 条
  • [21] Face Anti-Spoofing System using Motion and Similarity Feature Elimination under Spoof Attacks
    Bakshi, Aditya
    Gupta, Sunanda
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2022, 19 (05) : 747 - 758
  • [22] Face anti-spoofing based on projective invariants
    Naitsat, Alexander
    Zeevi, Yehoshua Y.
    2018 IEEE INTERNATIONAL CONFERENCE ON THE SCIENCE OF ELECTRICAL ENGINEERING IN ISRAEL (ICSEE), 2018,
  • [23] Anti-Spoofing of Live Face Authentication on Smartphone
    Tseng, Tz-Chia
    Shih, Teng-Fu
    Fuh, Chiou-Shann
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2021, 37 (03) : 605 - 616
  • [24] Face Anti-Spoofing Based on NIR Photos
    Shi, Zhiyuan
    Zhang, Hao
    Gao, Zhibin
    Huang, Lianfen
    PROCEEDINGS OF 2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (IEEE-ASID'2019), 2019, : 31 - 35
  • [25] Multimodal contrastive learning for face anti-spoofing
    Deng, Pengchao
    Ge, Chenyang
    Wei, Hao
    Sun, Yuan
    Qiao, Xin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 129
  • [26] Research Progress of Face Recognition Anti-spoofing
    Zhang F.
    Zhao S.-K.
    Yuan C.
    Chen W.
    Liu X.-L.
    Chao H.-C.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (07): : 2411 - 2446
  • [27] Meta-Teacher For Face Anti-Spoofing
    Qin, Yunxiao
    Yu, Zitong
    Yan, Longbin
    Wang, Zezheng
    Zhao, Chenxu
    Lei, Zhen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (10) : 6311 - 6326
  • [28] Progressive Transfer Learning for Face Anti-Spoofing
    Quan, Ruijie
    Wu, Yu
    Yu, Xin
    Yang, Yi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3946 - 3955
  • [29] Face Anti-Spoofing Based on Radon Transform
    Albu, Razvan D.
    2015 13TH INTERNATIONAL CONFERENCE ON ENGINEERING OF MODERN ELECTRIC SYSTEMS (EMES), 2015,
  • [30] Consistency Regularization for Deep Face Anti-Spoofing
    Wang, Zezheng
    Yu, Zitong
    Wang, Xun
    Qin, Yunxiao
    Li, Jiahong
    Zhao, Chenxu
    Liu, Xin
    Lei, Zhen
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 1127 - 1140