Interfacial C-S Bonds of g-C3N4/Bi19Br3S27 S-Scheme Heterojunction for Enhanced Photocatalytic CO2 Reduction

被引:33
|
作者
Li, Xiaofeng [1 ]
Zhang, Jinfeng [1 ]
Wang, Zhongliao [1 ]
Fu, Junwei [2 ]
Li, Simin [3 ]
Dai, Kai [1 ]
Liu, Min [2 ]
机构
[1] Huaibei Normal Univ, Key Lab Green & Precise Synthet Chem & Applicat, Minist Educ, Huaibei 235000, Peoples R China
[2] Cent South Univ, Hunan Joint Int Res Ctr Carbon Dioxide Resource Ut, Sch Phys & Elect, Changsha 410083, Peoples R China
[3] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi19Br3S27; carbon nitride; CO2; photoreduction; interfacial chemical bonds; S-scheme heterojunction; LIGHT;
D O I
10.1002/chem.202202669
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Step-scheme (S-scheme) heterojunctions have been extensively studied in photocatalytic carbon dioxide (CO2) reduction due to their excellent charge separation and high redox ability. The built-in electric field at the interface of a S-scheme heterojunction serves as the driving force for charge transfer, however, the poor interfacial contact greatly restricts the carrier migration rate. Herein, we synthesized the g-C3N4/Bi19Br3S27 S-scheme heterostructure through in situ deposition of Bi19Br3S27 (BBS) on porous g-C3N4 (P-CN) nanosheets. The C-S bonds formed at the interface help to enhance the built-in electric field, thereby promoting the charge transfer and separation. As a result, the CO2 reduction reaction performance of 10 %Bi19Br3S27/g-C3N4 (BBS/P-CN) reaches 32.78 mu mol g(-1)h(-1), which is 341.4 and 18.7 times higher than that of pure BBS and P-CN, respectively. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) prove the presence of chemical bonds (C-S) between the P-CN and BBS. The S-scheme charge-transfer mechanism was analyzed via XPS and density functional theory (DFT) calculations. This work provides a new idea for designing heterojunction photocatalysts with interfacial chemical bonds to achieve high charge-transfer and catalytic activity.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Z-scheme heterojunction of Bi2S3/g-C3N4 and its photocatalytic effect
    Meng, Yachu
    Li, Yuzhen
    Xia, Yunsheng
    Chen, Wenjun
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2022, 29 (02) : 128 - 138
  • [32] S-scheme bimetallic sulfide ZnCo2S4/g-C3N4 heterojunction for photocatalytic H2 evolution
    Wang, Chenxuan
    Zhang, Wenjuan
    Fan, Jun
    Sun, Wenjuan
    Liu, Enzhou
    CERAMICS INTERNATIONAL, 2021, 47 (21) : 30194 - 30202
  • [33] Amine-Modified S-Scheme Porous g-C3N4/CdSe-Diethylenetriamine Composite with Enhanced Photocatalytic CO2 Reduction Activity
    Huo, Yao
    Zhang, Jinfeng
    Dai, Kai
    Liang, Changhao
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (01) : 956 - 968
  • [34] In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction
    Qin, Jianyu
    An, Yuejiao
    Zhang, Yanfeng
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (12)
  • [35] Study on TiO2/g-C3N4 S-Scheme heterojunction photocatalyst for enhanced formaldehyde decomposition
    Wu, Yihai
    Meng, Deqin
    Guo, Qingbin
    Gao, Dengzheng
    Wang, Li
    OPTICAL MATERIALS, 2022, 126
  • [36] Study on TiO2/g-C3N4 S-Scheme heterojunction photocatalyst for enhanced formaldehyde decomposition
    Wu, Yihai
    Meng, Deqin
    Guo, Qingbin
    Gao, Dengzheng
    Wang, Li
    Optical Materials, 2022, 126
  • [37] Heterojunction nanoarchitectonics with SnS2/g-C3N4 S-scheme toward enhanced photooxidation and photoreduction
    Song, Tong
    Zhang, Xiao
    Che, Quande
    Yang, Ping
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 113 : 389 - 400
  • [38] Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction
    Ye, Liqun
    Wu, Dan
    Chu, Ka Him
    Wang, Bo
    Xie, Haiquan
    Yip, Ho Yin
    Wong, Po Keung
    CHEMICAL ENGINEERING JOURNAL, 2016, 304 : 376 - 383
  • [39] Bi2WO6/C3N4 S-Scheme Heterojunction with a Built-In Electric Field for Photocatalytic CO2 Reduction
    Tang, Qiaoya
    Tao, Wei
    Hu, Jianqiang
    Gui, Tian
    Wang, Zhipeng
    Xiao, Yuting
    Song, Renjie
    Jiang, Yong
    Guo, Shien
    ACS APPLIED NANO MATERIALS, 2023, 6 (18) : 17130 - 17139
  • [40] Excellent photocatalytic activity of MoO3-adorned g-C3N4 systems: Construction of S-scheme heterojunction
    Luo, Jianmin
    Han, Haonan
    Wu, Jingwu
    Wang, Xinlei
    Feng, Junli
    Toan, Sam
    Wang, Lei
    Lai, Yinlong
    APPLIED SURFACE SCIENCE, 2022, 604