Hydrogen-bonded organic frameworks with extended conjugate systems for boosted photocatalytic degradation

被引:6
|
作者
Bai, Xiaojuan [1 ,2 ]
Xin, Yilin [1 ,2 ]
Jia, Tianqi [1 ,2 ]
Guo, Linlong [1 ,2 ]
Song, Wei [1 ,2 ]
Hao, Derek [3 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Beijing Energy Conservat & Sustainable Urban & Rur, Beijing 100044, Peoples R China
[2] Beijing Univ Civil Engn & Architecture, Key Lab Urban Stormwater Syst & Water Environm, Minist Educ, Beijing 100044, Peoples R China
[3] RMIT Univ, Sch Sci, Melbourne, Vic 3000, Australia
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
PHTHALOCYANINE; SULFAMETHOXAZOLE; OXIDATION; TIO2; DECOMPOSITION; CRYSTALLINE; PERFORMANCE; CATALYSTS; FTIR;
D O I
10.1039/d4nj00610k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Restricted light absorption spectra in conjunction with intrinsic material instability present formidable challenges to the effective functionality of existing photocatalytic systems. As a viable alternative to conventional photocatalytic materials, hydrogen-bonded organic frameworks (HOFs) can form conjugated systems through coupling and stacking effects, which can effectively promote the rapid transfer of charge over a wide optical range and improve the stability and photocatalytic activity. Herein we employ a large conjugate system material based on cobalt phthalocyanine (HOF-CoPcTc) as a proof of concept for this approach. The carboxyl groups in the tetracarboxy cobalt phthalocyanine were conjugated with phthalocyanine macrocycles which could extend the pi-electron conjugation system of HOF-CoPcTc. Remarkably, the decomposition rate of the sulfamethoxazole (SMX) molecule in an aqueous solution was about 99% after 120 min under visible light irradiation for HOF-CoPcTc, which is a significant 9.78-fold improvement over that of the ligand CoPcTc. This study demonstrated that metal phthalocyanine compositions with carboxyl groups can be used to successfully synthesize HOF materials for large conjugated systems and provide a useful method for achieving efficient photocatalytic degradation of antibiotics. A schematic mechanism of the photocatalytic degradation process of SMX by solvothermal synthesis of hydrogen-bonded organic framework materials.
引用
收藏
页码:7213 / 7224
页数:12
相关论文
共 50 条
  • [21] Biomimetic chiral hydrogen-bonded organic-inorganic frameworks
    Guo, Jun
    Duan, Yulong
    Jia, Yunling
    Zhao, Zelong
    Gao, Xiaoqing
    Liu, Pai
    Li, Fangfang
    Chen, Hongli
    Ye, Yutong
    Liu, Yujiao
    Zhao, Meiting
    Tang, Zhiyong
    Liu, Yi
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [22] Hydrogen-bonded organic frameworks: new horizons in biomedical applications
    Yu, Dongqin
    Zhang, Haochen
    Ren, Jinsong
    Qu, Xiaogang
    CHEMICAL SOCIETY REVIEWS, 2023, 52 (21) : 7504 - 7523
  • [23] Hybrid Hydrogen-Bonded Organic Frameworks: Structures and Functional Applications
    Liu, Ying
    Chang, Ganggang
    Zheng, Fang
    Chen, Lihang
    Yang, Qiwei
    Ren, Qilong
    Bao, Zongbi
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (14)
  • [24] Functional Composite Materials Based on Hydrogen-Bonded Organic Frameworks
    Guo, Yixuan
    Wang, Chen
    Mo, Guanglai
    Wang, Yao
    Song, Xiyu
    Li, Peng
    CRYSTAL GROWTH & DESIGN, 2023, 23 (11) : 7635 - 7646
  • [25] Encapsulating and stabilizing enzymes using hydrogen-bonded organic frameworks
    Chen, Guosheng
    Huang, Siming
    Ma, Xiaomin
    He, Rongwei
    Ouyang, Gangfeng
    NATURE PROTOCOLS, 2023, 18 (07) : 2032 - +
  • [26] Hydrogen-Bonded Organic Frameworks: Structural Design and Emerging Applications
    Ding, Xiaojun
    Xie, Yi
    Gao, Qiang
    Luo, Yilin
    Chen, Jing
    Ye, Gang
    CHEMPHYSCHEM, 2023, 24 (07)
  • [27] Biomimetic chiral hydrogen-bonded organic-inorganic frameworks
    Jun Guo
    Yulong Duan
    Yunling Jia
    Zelong Zhao
    Xiaoqing Gao
    Pai Liu
    Fangfang Li
    Hongli Chen
    Yutong Ye
    Yujiao Liu
    Meiting Zhao
    Zhiyong Tang
    Yi Liu
    Nature Communications, 15 (1)
  • [28] Hydrogen-bonded organic frameworks of twisted polycyclic aromatic hydrocarbon
    Suzuki, Yuto
    Tohnai, Norimitsu
    Saeki, Akinori
    Hisaki, Ichiro
    CHEMICAL COMMUNICATIONS, 2020, 56 (87) : 13369 - 13372
  • [29] Encapsulating and stabilizing enzymes using hydrogen-bonded organic frameworks
    Guosheng Chen
    Siming Huang
    Xiaomin Ma
    Rongwei He
    Gangfeng Ouyang
    Nature Protocols, 2023, 18 : 2032 - 2050
  • [30] Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials
    Wang, Bin
    Lin, Rui-Biao
    Zhang, Zhangjing
    Xiang, Shengchang
    Chen, Banglin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (34) : 14399 - 14416