Comparative analysis of electrolyzers for electrochemical carbon dioxide conversion

被引:14
|
作者
Gao, Guorui [1 ]
Obasanjo, Cornelius A. [1 ]
Crane, Jackson [2 ]
Dinh, Cao-Thang [1 ]
机构
[1] Queens Univ, Dept Chem Engn, Kingston, ON K7L 3N6, Canada
[2] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CO; 2; electroreduction; Electrolyzer; Electrocatalytic systems; Renewable fuels and chemicals; GAS-DIFFUSION ELECTRODE; ELECTROCATALYTIC CO2 REDUCTION; HIGH-PRESSURE; POLYCRYSTALLINE COPPER; OXIDATION-STATE; CURRENT-DENSITY; EFFICIENT CO2; ELECTROREDUCTION; CATALYST; PRODUCTS;
D O I
10.1016/j.cattod.2023.114284
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Electrochemical carbon dioxide (CO2) conversion to fuels and chemicals provides a long-term and large-scale storage solution for intermittent renewable electricity. In the last few decades, most of the effort has been devoted to developing new catalysts to improve CO2 reduction performance. Very recently, advances in system design, including electrochemical cell design and electrochemical operating conditions, have led to a significant improvement in CO2 conversion efficiency. In this review, we describe system design strategies in the context of boosting key performance metrics in CO2 conversion: current density, Faradaic efficiency, energy efficiency, stability, reactant utilization and product concentration, carbonate formation and CO2 crossover. The advantages and limitations of each strategy, in terms of overall CO2 conversion performance, are discussed. This review offers guidelines for developing a high-performance electrochemical CO2 conversion system to bring this technology closer to practical implementation.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] A molten calcium carbonate mediator for the electrochemical conversion and absorption of carbon dioxide
    Chen, Xiang
    Zhao, Haijia
    Qu, Jiakang
    Tang, Diyong
    Zhao, Zhuqing
    Xie, Hongwei
    Wang, Dihua
    Yin, Huayi
    GREEN CHEMISTRY, 2020, 22 (22) : 7946 - 7954
  • [32] Bicarbonate or Carbonate Processes for Coupling Carbon Dioxide Capture and Electrochemical Conversion
    Welch, Alex J.
    Dunn, Emily
    DuChene, Joseph S.
    Atwater, Harry A.
    ACS ENERGY LETTERS, 2020, 5 (03) : 940 - 945
  • [33] Electrochemical conversion of carbon dioxide in molten salts: In-situ and beyond
    Shuangxi Jing
    Mingyong Wang
    Wei Xiao
    Journal of Energy Chemistry , 2022, (01) : 404 - 405
  • [34] Recent advances and perspectives in carbon nanotube production from the electrochemical conversion of carbon dioxide
    Dipta, I. Ketut Rai Asmara
    Lee, Chan Woo
    JOURNAL OF CO2 UTILIZATION, 2024, 82
  • [35] Carbon Dioxide Conversion
    Xiong, Yujie
    Ye, Jinhua
    Zhao, Chuan
    CHEMNANOMAT, 2021, 7 (09) : 967 - 968
  • [36] Electrochemical CO2-to-CO conversion: electrocatalysts, electrolytes, and electrolyzers
    Gao, Fei-Yue
    Bao, Rui-Cheng
    Gao, Min-Rui
    Yu, Shu-Hong
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (31) : 15458 - 15478
  • [37] A comparative analysis to forecast carbon dioxide emissions
    Faruque, Md. Omer
    Rabby, Md. Afser Jani
    Hossain, Md. Alamgir
    Islam, Md. Rashidul
    Rashid, Md Mamun Ur
    Muyeen, S. M.
    ENERGY REPORTS, 2022, 8 : 8046 - 8060
  • [38] Copper nanoparticle/carbon nanospike catalyst for high-selectivity electrochemical conversion of carbon dioxide
    Song, Yang
    Hensley, Dale
    Rondinone, Adam
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [39] Modeling the Electrochemical Conversion of Carbon Dioxide to Formic Acid or Formate at Elevated Pressures
    Morrison, Andrew R. T.
    van Beusekom, Vincent
    Ramdin, Mahinder
    van den Broeke, Leo J. P.
    Vlugt, Thijs J. H.
    de Jong, Wiebren
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (04) : E77 - E86
  • [40] Electrochemical Conversion of Carbon Dioxide to Formate in Alkaline Polymer Electrolyte Membrane Cells
    不详
    ELECTROCHEMICAL SOCIETY INTERFACE, 2011, 20 (02): : 27 - 27