Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries

被引:51
|
作者
Nguyen, An-Giang [1 ]
Park, Chan-Jin [1 ]
机构
[1] Chonnam Natl Univ, Dept Mat Sci & Engn, 77 Yongbong Ro, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
Ionic conductivity; Safety; Composite solid polymer electrolytes; Solid-state batteries; Filler design; HIGH IONIC-CONDUCTIVITY; TRANSFERENCE NUMBERS; ELECTROCHEMICAL PROPERTIES; MECHANICAL-PROPERTIES; TRANSPORT-PROPERTIES; HYBRID ELECTROLYTES; THERMAL-PROPERTIES; METAL BATTERIES; MEMBRANES; OXIDE;
D O I
10.1016/j.memsci.2023.121552
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Lithium-ion batteries (LIBs) have widely revolutionised our lifestyle in the Battery of Things era. However, safety issues in LIBs that utilise organic liquid electrolytes have been regarded as a bottleneck to rapidly expanding the application of batteries in electric vehicles and large-scale energy storage systems. Fortunately, solid-state bat-teries (SSBs) using solid-state electrolytes are emerging as promising alternatives to conventional LIBs since they improve the energy density and stability of the batteries. In this regard, solid electrolytes play a crucial role in developing SSBs. Among various types of solid-state electrolytes, composite solid polymer electrolytes (CSPEs) are of particular interest by harmonizing the advantages of the inorganic solid and solid polymer electrolytes. However, the application of CSPEs is limited by their intrinsic shortcomings. This review discusses the comprehensive and extensive understanding of the state-of-art of CSPEs, mainly focusing on the fundamentals, design strategies, and synthesis methods for CSPEs to improve ionic conductivity and make stable interfaces with electrodes. In addition, future strategies and perspectives are provided with possible directions to accelerate the development of CSPEs.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] SOLID ELECTROLYTES AND SOLID-STATE BATTERIES
    LIANG, CC
    CHEMTECH, 1983, 13 (05) : 303 - 305
  • [32] Solid Electrolytes and Solid-State Batteries
    Takada, Kazunori
    ELECTROCHEMICAL STORAGE MATERIALS: SUPPLY, PROCESSING, RECYCLING AND MODELLING (ESTORM2015), 2016, 1765
  • [33] A Composite Solid-state Polymer Electrolyte for Solid-state Sodium Batteries
    Zhang Q.
    Su X.
    Lu Y.
    Hu Y.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2020, 48 (07): : 939 - 946
  • [34] Chloride solid-state electrolytes for all-solid-state lithium batteries
    Wu, Hao
    Han, Haoqin
    Yan, Zhenhua
    Zhao, Qing
    Chen, Jun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (09) : 1791 - 1808
  • [35] Chloride solid-state electrolytes for all-solid-state lithium batteries
    Hao Wu
    Haoqin Han
    Zhenhua Yan
    Qing Zhao
    Jun Chen
    Journal of Solid State Electrochemistry, 2022, 26 : 1791 - 1808
  • [36] Designing composite polymer electrolytes for all-solid-state lithium batteries
    Grundish, Nicholas S.
    Goodenough, John B.
    Khani, Hadi
    CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 30
  • [37] Composite solid electrolytes for all-solid-state lithium batteries
    Dirican, Mahmut
    Yan, Chaoyi
    Zhu, Pei
    Zhang, Xiangwu
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2019, 136 (27-46): : 27 - 46
  • [38] The role of polymers in lithium solid-state batteries with inorganic solid electrolytes
    Sen, Sudeshna
    Trevisanello, Enrico
    Niemoeller, Elard
    Shi, Bing-Xuan
    Simon, Fabian J.
    Richter, Felix H.
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 18701 - 18732
  • [39] Progress in solid electrolytes toward realizing solid-state lithium batteries
    Takada, Kazunori
    JOURNAL OF POWER SOURCES, 2018, 394 : 74 - 85
  • [40] Ultrahigh Elastic Polymer Electrolytes for Solid-State Lithium Batteries with Robust Interfaces
    Zheng, Tianxiang
    Cui, Ximing
    Chu, Ying
    Li, Haijuan
    Pan, Qinmin
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (04) : 5932 - 5939