Comparative study on MQL milling and hole making processes for laser beam powder bed fusion (L-PBF) of Ti-6Al-4V titanium alloy

被引:13
|
作者
Li, Jihang [1 ]
Shi, Wentian [1 ]
Lin, Yuxiang [1 ]
Li, Jie [1 ]
Liu, Shuai [1 ]
Liu, Bo [1 ]
机构
[1] Beijing Technol & Business Univ, Sch Artificial Intelligence, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
L-PBF; Milling; MQL; Hole making; Ti-6Al-4V; Surface quality; CUTTING FORCE; SURFACE-ROUGHNESS; MICROSTRUCTURE; PERFORMANCE; OIL;
D O I
10.1016/j.jmapro.2023.03.055
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this experiment, the laser powder bed fusion (L-PBF) formed prefabricated hole specimens were machined at a certain cutting speed by changing the feed rate and using the dry cutting and micro lubrication (MQL) assisted cutting process with the aim of improving the surface accuracy and quality of additively manufactured titanium alloy holes. The machining method of milling was used to compare and analyze the surface quality, cutting force, tool wear, and chip shape of the specimens under different machining processes. The results have shown that the actual dimensions of the original holes formed by L-PBF are generally smaller than the theoretical ones, mainly due to the collapsed areas and powder adhesion zones. The best machining quality of the hole structure was obtained with the feed rate of 20 mm/min and the MQL-assisted process. The burr was relatively minimal, with an average dimensional error of only 77 mu m. The overall cutting forces are high and fluctuate during dry cutting. The MQL-assisted cutting process can significantly reduce the cutting forces compared with the dry cutting conditions, especially the radial cutting forces, during machining. At a feed rate of 10 mm/min, the overall maximum radial cutting force is reduced by 72 %, and the overall average axial cutting force is reduced by 35 %. At a feed rate of 30 mm/min, the overall maximum axial cutting force is reduced by 37 %. The tool wear was severe, and many chips adhered to the tool under dry-cutting conditions. The tool wear was significantly reduced under the MQL process, presumably because the atomized lubricant formed an oil film on the tool, powder, and substrate, significantly reducing friction and chip adhesion. In addition, under the oil film, the residual metal powder is like the ball in a ball bearing, significantly reducing the friction between the tool and the substrate.
引用
收藏
页码:20 / 34
页数:15
相关论文
共 50 条
  • [11] Laser powder bed fusion (L-PBF) of Ti-6Al-4V/Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V/γ-TiAl bimetals: Processability, interface and mechanical properties
    Fan, Haiyang
    Wang, Chengcheng
    Tian, Yujia
    Zhou, Kun
    Yang, Shoufeng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 871
  • [12] Study of mechanical and tribological properties of Ti-6Al-4V alloy fabricated by powder bed fusion laser beam
    Shi, Xiaojie
    Lu, Peipei
    Ye, Xiu
    Ren, Shuai
    Wang, Yiyao
    Xie, Ziwen
    Ma, Yiqing
    Miao, Xiaojin
    Wu, Meiping
    POWDER METALLURGY, 2023, 66 (02) : 116 - 128
  • [13] Temperature profile and melt depth in laser powder bed fusion of Ti-6Al-4V titanium alloy
    Criales L.E.
    Özel T.
    Progress in Additive Manufacturing, 2017, 2 (3) : 169 - 177
  • [14] Comparative study on fatigue crack propagation behavior of Ti-6Al-4V products made by DED (direct energy deposition) and L-PBF (laser-powder bed fusion) process
    Lee, Junmin
    Kim, Kwangyeon
    Choi, Jiwon
    Kim, Jung Gi
    Kim, Sangshik
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 23 : 4499 - 4512
  • [15] In-situ synchrotron X-ray diffraction investigation of martensite decomposition in Laser Powder Bed Fusion (L-PBF) processed Ti-6Al-4V
    Dhekne, Pushkar Prakash
    Bonisch, Matthias
    Seefeldt, Marc
    Vanmeensel, Kim
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 899
  • [16] The Effect of Laser Powder Bed Fusion Process on Ti-6Al-4V Powder
    Memu, Firat
    Durlu, Nuri
    Yagmur, Aydin
    JOM, 2025,
  • [17] Microstructural Development of Ti-6Al-4V Alloy via Powder Metallurgy and Laser Powder Bed Fusion
    Baghi, Alireza Dareh
    Nafisi, Shahrooz
    Ebendorff-Heidepriem, Heike
    Ghomashchi, Reza
    METALS, 2022, 12 (09)
  • [18] Process variation in Laser Powder Bed Fusion of Ti-6Al-4V
    Chen, Zhuoer
    Wu, Xinhua
    Davies, Chris H. J.
    ADDITIVE MANUFACTURING, 2021, 41
  • [19] Precipitation hardening of laser powder bed fusion Ti-6Al-4V
    Derimow, Nicholas
    Benzing, Jake T.
    Garcia, Jacob
    Levin, Zachary S.
    Lu, Ping
    Moser, Newell
    Beamer, Chad
    Delrio, Frank W.
    Hrabe, Nik
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 921
  • [20] Thermal Conductivity of Ti-6Al-4V in Laser Powder Bed Fusion
    Bartsch, Katharina
    Bossen, Bastian
    Chaudhary, Waqar
    Landry, Michael
    Herzog, Dirk
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2022, 8