A Probabilistic Look At 1k+2k + MIDLINE HORIZONTAL ELLIPSIS plus nk

被引:0
|
作者
Farhadian, Reza [1 ]
机构
[1] Razi Univ, Dept Stat, Kermanshah, Iran
来源
RESONANCE-JOURNAL OF SCIENCE EDUCATION | 2023年 / 28卷 / 03期
关键词
Sum of powers; probabilistic proof; positive integers; SUMS; POWERS;
D O I
10.1007/s12045-023-1568-6
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In this note, we aim to provide a probabilistic method to obtain closed-form formulae for sums of powers of the first n positive integers.
引用
收藏
页码:479 / 482
页数:4
相关论文
共 50 条
  • [1] A Probabilistic Look At 1 k + 2 k + ⋯ + n k
    Farhadian R.
    Resonance, 2023, 28 (3) : 479 - 482
  • [2] On the equation 1k+2k + ... + xk=yn
    Györy, K
    Pintér, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 62 (3-4): : 403 - 414
  • [3] The construction D + DX+DX2+MIDLINE HORIZONTAL ELLIPSIS + DXk + Xk+1K[X]
    Hu, Kui
    Wang, Ling
    Zhou, De Chuan
    Xie, Jin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023,
  • [4] On the Diophantine equation 1k+2k +...+ xk = yn
    Bennett, MA
    Gyory, K
    Pintér, A
    COMPOSITIO MATHEMATICA, 2004, 140 (06) : 1417 - 1431
  • [5] On the equation 1k+2k + ••• + xk = yn for fixed x
    Berczes, A.
    Hajdu, L.
    Miyazaki, T.
    Pink, I.
    JOURNAL OF NUMBER THEORY, 2016, 163 : 43 - 60
  • [6] THE ERDOS-MOSER EQUATION 1k+2k + ... plus (m-1)k = mk REVISITED USING CONTINUED FRACTIONS
    Gallot, Yves
    Moree, Pieter
    Zudilin, Wadim
    MATHEMATICS OF COMPUTATION, 2011, 80 (274) : 1221 - 1237
  • [7] MOSER'S MATHEMAGICAL WORK ON THE EQUATION 1k+2k + ... + ( m-1)k = mk
    Moree, Pieter
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (05) : 1707 - 1737
  • [8] On some generalizations of the diophantine equation s(1k+2k + ... + xk) + r = dyn
    Rakaczki, Csaba
    ACTA ARITHMETICA, 2012, 151 (02) : 201 - 216
  • [9] 关于lim(1k+2k+3k+…+nk)/(nk+1)=1/(k+1)推广
    王秀英
    南都学坛, 1992, (S1) : 116 - 117
  • [10] EXPLICIT ESTIMATES FOR THE SUM Σnk=0k!(nk)2(-1)k
    Ernvall-Hytonen, Anne-maria
    Matala-aho, Tapani
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (02) : 679 - 692