The coming of age of interpretable and explainable machine learning models

被引:40
|
作者
Lisboa, P. J. G. [1 ]
Saralajew, S. [2 ]
Vellido, A. [3 ,4 ]
Fernandez-Domenech, R. [3 ,4 ]
Villmann, T. [5 ]
机构
[1] Liverpool John Moores Univ, Liverpool, England
[2] NEC Labs Europe GmbH, Heidelberg, Germany
[3] UPC BarcelonaTech, Dept Comp Sci, Barcelona, Spain
[4] UPC Res Ctr, IDEAI, Barcelona, Spain
[5] Univ Appl Sci Mittweida, Saxon Inst Comp Intelligence & Machine Learning, Mittweida, Germany
关键词
XAI; Interpretable ML; Explainable ML; Transparent AI; AUTOMATED DECISION-MAKING; NEURAL-NETWORKS; ARTIFICIAL-INTELLIGENCE; CLASSIFICATION; EXPLANATION;
D O I
10.1016/j.neucom.2023.02.040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine-learning-based systems are now part of a wide array of real-world applications seamlessly embedded in the social realm. In the wake of this realization, strict legal regulations for these systems are currently being developed, addressing some of the risks they may pose. This is the coming of age of the concepts of interpretability and explainability in machine-learning-based data analysis, which can no longer be seen just as an academic research problem. In this paper, we discuss explainable and interpretable machine learning as post hoc and ante-hoc strategies to address regulatory restrictions and highlight several aspects related to them, including their evaluation and assessment and the legal boundaries of application.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 50 条
  • [41] Explainable Machine Learning
    Garcke, Jochen
    Roscher, Ribana
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (01): : 169 - 170
  • [42] Epileptic seizure detection by using interpretable machine learning models
    Zhao, Xuyang
    Yoshida, Noboru
    Ueda, Tetsuya
    Sugano, Hidenori
    Tanaka, Toshihisa
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)
  • [43] Interpretable machine learning models for COPD ease of breathing estimation
    Kok, Thomas T.
    Morales, John
    Deschrijver, Dirk
    Blanco-Almazan, Dolores
    Groenendaal, Willemijn
    Ruttens, David
    Smeets, Christophe
    Mihajlovic, Vojkan
    Ongenae, Femke
    Van Hoecke, Sofie
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2025,
  • [44] Interpretable Catalysis Models Using Machine Learning with Spectroscopic Descriptors
    Wang, Song
    Jiang, Jun
    ACS CATALYSIS, 2023, 13 (11) : 7428 - 7436
  • [45] Neural Additive Models: Interpretable Machine Learning with Neural Nets
    Agarwal, Rishabh
    Melnick, Levi
    Frosst, Nicholas
    Zhang, Xuezhou
    Lengerich, Ben
    Caruana, Rich
    Hinton, Geoffrey E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [46] Machine learning of material properties: Predictive and interpretable multilinear models
    Allen, Alice E. A.
    Tkatchenko, Alexandre
    SCIENCE ADVANCES, 2022, 8 (18)
  • [47] Explainable machine learning models for early gastric cancer diagnosis
    Du, Hongyang
    Yang, Qingfen
    Ge, Aimin
    Zhao, Chenhao
    Ma, Yunhua
    Wang, Shuyu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [48] Use of explainable machine learning models in blast load prediction
    Widanage, C.
    Mohotti, D.
    Lee, C. K.
    Wijesooriya, K.
    Meddage, D. P. P.
    ENGINEERING STRUCTURES, 2024, 312
  • [49] Explainable prediction of loan default based on machine learning models
    Zhu X.
    Chu Q.
    Song X.
    Hu P.
    Peng L.
    Data Science and Management, 2023, 6 (03): : 123 - 133
  • [50] Interpretable Machine Learning Models for Prediction of UHPC Creep Behavior
    Zhu, Peng
    Cao, Wenshuo
    Zhang, Lianzhen
    Zhou, Yongjun
    Wu, Yuching
    Ma, Zhongguo John
    BUILDINGS, 2024, 14 (07)