CMFCUNet: cascaded multi-scale feature calibration UNet for pancreas segmentation

被引:11
|
作者
Qiu, Chengjian [1 ]
Song, Yuqing [1 ]
Liu, Zhe [1 ]
Yin, Jing [1 ]
Han, Kai [1 ]
Liu, Yi [1 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Pancreas segmentation; Coarse-to-fine approaches; Multi-scale feature calibration; Convolutional neural networks; CT; ATTENTION; IMAGES; NET;
D O I
10.1007/s00530-022-01020-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Segmenting the pancreas from abdominal CT scans is challenging since it often takes up a relatively small region. Researchers suggested leveraging coarse-to-fine approaches to cope with this challenge. However, the coarse-scaled segmentation and the fine-scaled segmentation are either trained separately utilizing the coordinates located by the coarse-scaled segmentation mask to crop the fine-scaled segmentation input, or trained jointly utilizing the coarse-scaled segmentation mask to enhance the fine-scaled segmentation input. We argued that these two solutions are complementary to some extent and can promote each other to improve the performance of pancreas segmentation. In addition, the backbone in the coarse-scaled segmentation and fine-scaled segmentation is mostly based on UNet or UNet-like networks, where the multi-scale features transmitted from the encoder to the decoder have not been explored for vertical calibration before. In this paper, we propose a cascaded multi-scale feature calibration UNet (CMFCUNet) for pancreas segmentation where the multi-scale features in the backbone of each scaled segmentation are calibrated vertically in a pixel-wise fashion. Besides, the coarse-scaled segmentation and the fine-scaled segmentation are connected by leveraging a designed dual enhancement module (DEM). Experiments are first conducted on the public NIH pancreas dataset. First, when leveraging CMFCUNet, our method increased by over 3% on the Jaccard index (JI) and nearly 1% on dice similarity coefficient (DSC) which surpasses all existing pancreas segmentation approaches. In addition, our experiments demonstrate that CMFCUNet improved the coarse-to-fine segmentation framework and outperformed the mainstream coarse-to-fine pancreas segmentation approaches. Furthermore, we also conducted ablation studies to analyze the effectiveness of the backbone (MFCUNet) and the DEM. In addition to the experiments on the NIH dataset, we also experimentally demonstrate the excellent generalization of our method on the MSD pancreas dataset.
引用
收藏
页码:871 / 886
页数:16
相关论文
共 50 条
  • [21] Medical image segmentation with UNet-based multi-scale context fusion
    Yuan, Yongqi
    Cheng, Yong
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [22] A Novel Multi-Scale Attention PFE-UNet for Forest Image Segmentation
    Zhang, Boyang
    Mu, Hongbo
    Gao, Mingyu
    Ni, Haiming
    Chen, Jianfeng
    Yang, Hong
    Qi, Dawei
    FORESTS, 2021, 12 (07):
  • [23] Parallel multi-scale network with attention mechanism for pancreas segmentation
    Long, Jianwu
    Song, Xinlei
    An, Yong
    Li, Tong
    Zhu, Jiangzhou
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (01) : 110 - 119
  • [24] Dual encoding DDS-UNet liver tumour segmentation based on multi-scale deep and shallow feature fusion
    Li, JianFeng
    Niu, YanMin
    IET IMAGE PROCESSING, 2024, 18 (05) : 1189 - 1199
  • [25] Knee Cartilages Segmentation Based on Multi-scale Cascaded Neural Networks
    Liu, Junrui
    Hua, Cong
    Zhang, Liang
    Li, Ping
    Lu, Xiaoyuan
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2021, 2021, 12966 : 20 - 29
  • [26] MULTI-SCALE MASS SEGMENTATION FOR MAMMOGRAMS VIA CASCADED RANDOM FORESTS
    Min, Hang
    Chandra, Shekhar S.
    Dhungel, Neeraj
    Crozier, Stuart
    Bradley, Andrew P.
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 113 - 117
  • [27] DMSA-UNet: Dual Multi-Scale Attention makes UNet more strong for medical image segmentation
    Li, Xiang
    Fu, Chong
    Wang, Qun
    Zhang, Wenchao
    Sham, Chiu-Wing
    Chen, Junxin
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [28] MA-Unet:An improved version of Unet based on multi-scale and attention mechanism for medical image segmentation
    Cai, Yutong
    Wang, Yong
    THIRD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION; NETWORK AND COMPUTER TECHNOLOGY (ECNCT 2021), 2022, 12167
  • [29] A multi-scale, multi-task fusion UNet model for accurate breast tumor segmentation
    Dai, Shuo
    Liu, Xueyan
    Wei, Wei
    Yin, Xiaoping
    Qiao, Lishan
    Wang, Jianing
    Zhang, Yu
    Hou, Yan
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 258
  • [30] MSCA-UNet: multi-scale channel attention-based UNet for segmentation of medical ultrasound images
    Chen, Zihan
    Zhu, Haijiang
    Liu, Yutong
    Gao, Xiaoyu
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (05): : 6787 - 6804