A review on the recent progress, opportunities, and challenges of 4D printing and bioprinting in regenerative medicine

被引:33
|
作者
Pourmasoumi, Parvin [1 ]
Moghaddam, Armaghan [1 ]
Mahand, Saba Nemati [1 ]
Heidari, Fatemeh [1 ]
Moghaddam, Zahra Salehi [2 ]
Arjmand, Mohammad [3 ]
Kuehnert, Ines [4 ]
Kruppke, Benjamin [5 ,6 ]
Wiesmann, Hans-Peter [5 ,6 ]
Khonakdar, Hossein Ali [1 ,4 ]
机构
[1] Iran Polymer & Petrochem Inst IPPI, Tehran 14965115, Iran
[2] Univ Tehran, Sch Biol, Coll Sci, Dept Microbial Biotechnol, Tehran, Iran
[3] Univ British Columbia, Sch Engn, Nanomat & Polymer Nanocomposites Lab, Kelowna, BC, Canada
[4] Leibniz Inst Polymer Res Dresden, Dresden, Germany
[5] Tech Univ Dresden, Max Bergmann Ctr, Dresden, Germany
[6] Tech Univ Dresden, Inst Mat Sci, Dresden, Germany
关键词
Bioink; stimuli-responsive; 3D printing; 4D bioprinting; tissue engineering; STIMULI-RESPONSIVE POLYMERS; TRACTION FORCE; SMART POLYMERS; 3D; TISSUE; SCAFFOLDS; PH; TEMPERATURE; HYDROGEL; NANOPARTICLES;
D O I
10.1080/09205063.2022.2110480
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Four-dimensional (4D) printing is a novel emerging technology, which can be defined as the ability of 3D printed materials to change their form and functions. The term 'time' is added to 3 D printing as the fourth dimension, in which materials can respond to a stimulus after finishing the manufacturing process. 4D printing provides more versatility in terms of size, shape, and structure after printing the construct. Complex material programmability, multi-material printing, and precise structure design are the essential requirements of 4D printing systems. The utilization of stimuli-responsive polymers has increasingly taken the place of cell traction force-dependent methods and manual folding, offering a more advanced technique to affect a construct's adjusted shape transformation. The present review highlights the concept of 4D printing and the responsive bioinks used in 4D printing, such as water-responsive, pH-responsive, thermo-responsive, and light-responsive materials used in tissue regeneration. Cell traction force methods are described as well. Finally, this paper aims to introduce the limitations and future trends of 4 D printing in biomedical applications based on selected key references from the last decade.
引用
收藏
页码:108 / 146
页数:39
相关论文
共 50 条
  • [31] Regenerative medicine: challenges and opportunities
    Cossu, Giulio
    Fears, Robin
    Griffin, George
    ter Meulen, Volker
    LANCET, 2020, 395 (10239): : 1746 - 1747
  • [32] Review-Recent Progresses in 4D Printing of Gel Materials
    Ahmed, Kumkum
    Shiblee, Md Nahin Islam
    Khosla, Ajit
    Nagahara, Larry
    Thundat, Thomas
    Furukawa, Hidemitsu
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (03)
  • [33] Review on recent advances in 4D printing of shape memory polymers
    Alshebly, Yousif Saad
    Nafea, Marwan
    Ali, Mohamed Sultan Mohamed
    Almurib, Haider A. F.
    EUROPEAN POLYMER JOURNAL, 2021, 159
  • [34] A Review of Recent Advances in 3D Bioprinting With an Eye on Future Regenerative Therapies in Veterinary Medicine
    Jamieson, Colin
    Keenan, Patrick
    Kirkwood, D'Arcy
    Oji, Saba
    Webster, Caroline
    Russell, Keith A.
    Koch, Thomas G.
    FRONTIERS IN VETERINARY SCIENCE, 2021, 7
  • [35] Smart biomaterials: From 3D printing to 4D bioprinting
    Amukarimi, Shukufe
    Rezvani, Zahra
    Eghtesadi, Neda
    Mozafari, Masoud
    METHODS, 2022, 205 : 191 - 199
  • [36] Recent advances in 4D printing of hydrogels
    Li, Tongqing
    Huang, Zhenjia
    Tsui, Gary Chi-Pong
    Tang, Chak-Yin
    Deng, Yu
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2024, 63 (01)
  • [37] 4D Printing Technology: A Review
    Choi, Jin
    Kwon, O-Chang
    Jo, Wonjin
    Lee, Heon Ju
    Moon, Myoung-Woon
    3D PRINTING AND ADDITIVE MANUFACTURING, 2015, 2 (04) : 159 - 167
  • [38] 4D Printing of Hydrogels: A Review
    Champeau, Mathilde
    Heinze, Daniel Alves
    Viana, Thiago Nunes
    de Souza, Edcarlos Rodrigues
    Chinellato, Anne Cristine
    Titotto, Silvia
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (31)
  • [39] Review of 4D printing materials and reinforced composites: Behaviors, applications and challenges
    Alshahrani, Hassan A.
    JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2021, 6 (02): : 167 - 185
  • [40] Progress in 4D printing of stimuli responsive materials
    Patdiya, Jigar
    Kandasubramanian, Balasubramanian
    POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2021, 60 (17): : 1845 - 1883