Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review

被引:8
|
作者
Kumar, Pawan [1 ]
Shamim [2 ]
Muztaba, Mohammad [2 ]
Ali, Tarmeen [3 ]
Bala, Jyoti [1 ]
Sidhu, Haramritpal Singh [4 ]
Bhatia, Amit [1 ]
机构
[1] Maharaja Ranjit Singh Punjab Tech Univ, Dept Pharmaceut Sci & Technol, Bathinda 151001, India
[2] Praduman Singh Sikshan Prasikshan Sansthan Pharm C, Dept Pharmacol, Sansarpur 272001, Uttar Pradesh, India
[3] Swami Vivekanand Subharti Univ, Dept Pharm, Meerut 250005, Uttar Pradesh, India
[4] Maharaja Ranjit Singh Punjab Tech Univ, Giani Zail Singh Campus Coll Engn & Technol, Dept Mech Engn, Bathinda 151001, India
关键词
Biofilaments; Polymers; 3D printing; Scaffolds; Bone tissue engineering; COMPOSITE SCAFFOLDS; 3D; FABRICATION; MECHANISM;
D O I
10.1007/s10439-024-03479-z
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The emergence of bone tissue engineering as a trend in regenerative medicine is forcing scientists to create highly functional materials and scaffold construction techniques. Bone tissue engineering uses 3D bio-printed scaffolds that allow and stimulate the attachment and proliferation of osteoinductive cells on their surfaces. Bone grafting is necessary to expedite the patient's condition because the natural healing process of bones is slow. Fused deposition modeling (FDM) is therefore suggested as a technique for the production process due to its simplicity, ability to create intricate components and movable forms, and low running costs. 3D-printed scaffolds can repair bone defects in vivo and in vitro. For 3D printing, various materials including metals, polymers, and ceramics are often employed but polymeric biofilaments are promising candidates for replacing non-biodegradable materials due to their adaptability and environment friendliness. This review paper majorly focuses on the fused deposition modeling approach for the fabrication of 3D scaffolds. In addition, it also provides information on biofilaments used in FDM 3D printing, applications, and commercial aspects of scaffolds in bone tissue engineering.
引用
收藏
页码:1184 / 1194
页数:11
相关论文
共 50 条
  • [11] Acoustic and mechanical characterization of 3D-printed scaffolds for tissue engineering applications
    Aliabouzar, Mitra
    Zhang, Grace Lijie
    Sarkar, Kausik
    BIOMEDICAL MATERIALS, 2018, 13 (05)
  • [12] 3D-printed hydroxyapatite scaffolds for bone tissue engineering: A systematic review in experimental animal studies
    Avanzi, Ingrid Regina
    Parisi, Julia Risso
    Souza, Amanda
    Cruz, Matheus Almeida
    Santi Martignago, Cintia Cristina
    Ribeiro, Daniel Araki
    Cavalcante Braga, Anna Rafaela
    Renno, Ana Claudia
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2023, 111 (01) : 203 - 219
  • [13] Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Petretta, Mauro
    Gambardella, Alessandro
    Desando, Giovanna
    Cavallo, Carola
    Bartolotti, Isabella
    Shelyakova, Tatiana
    Goranov, Vitaly
    Brucale, Marco
    Dediu, Valentin Alek
    Fini, Milena
    Grigolo, Brunella
    POLYMERS, 2021, 13 (21)
  • [14] Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering
    Sun, Fengbo
    Sun, Xiaodan
    Wang, Hetong
    Li, Chunxu
    Zhao, Yu
    Tian, Jingjing
    Lin, Yuanhua
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (10)
  • [15] 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering
    Iglesias-Mejuto, Ana
    Garcia-Gonzalez, Carlos A.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 131
  • [16] Biological Response to Bioinspired Microporous 3D-Printed Scaffolds for Bone Tissue Engineering
    Ledda, Mario
    Merco, Miriam
    Sciortino, Antonio
    Scatena, Elisa
    Convertino, Annalisa
    Lisi, Antonella
    Del Gaudio, Costantino
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (10)
  • [17] 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy
    Ma, Hongshi
    Feng, Chun
    Chang, Jiang
    Wu, Chengtie
    ACTA BIOMATERIALIA, 2018, 79 : 37 - 59
  • [18] 3D-Printed, Dual Crosslinked and Sterile Aerogel Scaffolds for Bone Tissue Engineering
    Iglesias-Mejuto, Ana
    Garcia-Gonzalez, Carlos A.
    POLYMERS, 2022, 14 (06)
  • [19] Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications
    Rasoulianboroujeni, M.
    Fahimipour, F.
    Shah, P.
    Khoshroo, K.
    Tahriri, M.
    Eslami, H.
    Yadegari, A.
    Dashtimoghadam, E.
    Tayebi, L.
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 96 : 105 - 113
  • [20] 3D-printed tubular scaffolds for vascular tissue engineering
    Rabionet, Marc
    Jesus Guerra, Antonio
    Puig, Teresa
    Ciurana, Joaquim
    19TH CIRP CONFERENCE ON ELECTRO PHYSICAL AND CHEMICAL MACHINING, 2018, 68 : 352 - 357