PCNet: Leveraging Prototype Complementarity to Improve Prototype Affinity for Few-Shot Segmentation

被引:1
|
作者
Wang, Jing-Yu [1 ]
Liu, Shang-Kun [1 ]
Guo, Shi-Cheng [1 ]
Jiang, Cheng-Yu [1 ]
Zheng, Wei-Min [1 ]
Kim, Byung-Gyu
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
关键词
few-shot semantic segmentation; few-shot learning; self-distillation; self-support;
D O I
10.3390/electronics13010142
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the advent of large-scale datasets, significant advancements have been made in image semantic segmentation. However, the annotation of these datasets necessitates substantial human and financial resources. Therefore, the focus of research has shifted towards few-shot semantic segmentation, which leverages a small number of labeled samples to effectively segment unknown categories. The current mainstream methods are to use the meta-learning framework to achieve model generalization, and the main challenges are as follows. (1) The trained model will be biased towards the seen class, so the model will misactivate the seen class when segmenting the unseen class, which makes it difficult to achieve the idealized class agnostic effect. (2) When the sample size is limited, there exists an intra-class gap between the provided support images and the query images, significantly impacting the model's generalization capability. To solve the above two problems, we propose a network with prototype complementarity characteristics (PCNet). Specifically, we first generate a self-support query prototype based on the query image. Through the self-distillation, the query prototype and the support prototype perform feature complementary learning, which effectively reduces the influence of the intra-class gap on the model generalization. A standard semantic segmentation model is introduced to segment the seen classes during the training process to achieve accurate irrelevant class shielding. After that, we use the rough prediction map to extract its background prototype and shield the background in the query image by the background prototype. In this way, we obtain more accurate fine-grained segmentation results. The proposed method exhibits superiority in extensive experiments conducted on the PASCAL-5i and COCO-20i datasets. We achieve new state-of-the-art results in the few-shot semantic segmentation task, with an mIoU of 71.27% and 51.71% in the 5-shot setting, respectively. Comprehensive ablation experiments and visualization studies show that the proposed method has a significant effect on small-sample semantic segmentation.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Prototype Relationship Optimization Network for Few-Shot Learning
    Wang, Dengzhong
    Zhong, Yuan
    Ma, Yunfei
    Guo, Chunsheng
    IEEJ Transactions on Electrical and Electronic Engineering, 2024,
  • [42] Prototype Completion with Primitive Knowledge for Few-Shot Learning
    Zhang, Baoquan
    Li, Xutao
    Ye, Yunming
    Huang, Zhichao
    Zhang, Lisai
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3753 - 3761
  • [43] Distributed few-shot learning with prototype distribution correction
    Fu, Zhiling
    Tang, Dongfang
    Ma, Pingchuan
    Wang, Zhe
    Gao, Wen
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30552 - 30565
  • [44] Gaussian Prototype Rectification For Few-shot Image Recognition
    Lin, Jinfu
    Shen, Junmin
    He, Xiaojian
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [45] Multi-Prototype Few-shot Learning in Histopathology
    Deuschel, Jessica
    Firmbach, Daniel
    Geppert, Carol, I
    Eckstein, Markus
    Hartmann, Arndt
    Bruns, Volker
    Kuritcyn, Petr
    Dexl, Jakob
    Hartmann, David
    Perrin, Dominik
    Wittenberg, Thomas
    Benz, Michaela
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 620 - 628
  • [46] Few-Shot Classification Study for Prototype Fusion and Completion
    Wang, Yuheng
    Sun, Yanguo
    Lan, Zhenping
    Wang, Nan
    Li, Jiansong
    Yang, Xincheng
    IEEE Access, 2024, 12 : 174133 - 174143
  • [47] Prototype Relationship Optimization Network for Few-Shot Learning
    Wang, Dengzhong
    Zhong, Yuan
    Ma, Yunfei
    Guo, Chunsheng
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2025, 20 (03) : 405 - 414
  • [48] WPE: Weighted prototype estimation for few-shot learning
    Cao, Jiangzhong
    Yao, Zijie
    Yu, Lianggeng
    Ling, Bingo Wing-Kuen
    IMAGE AND VISION COMPUTING, 2023, 137
  • [49] Distributed few-shot learning with prototype distribution correction
    Zhiling Fu
    Dongfang Tang
    Pingchuan Ma
    Zhe Wang
    Wen Gao
    Applied Intelligence, 2023, 53 : 30552 - 30565
  • [50] Uncertainty guided semi-supervised few-shot segmentation with prototype level fusion
    Wang, Hailing
    Wu, Chunwei
    Zhang, Hai
    Cao, Guitao
    Cao, Wenming
    NEURAL NETWORKS, 2025, 181