PCNet: Leveraging Prototype Complementarity to Improve Prototype Affinity for Few-Shot Segmentation

被引:1
|
作者
Wang, Jing-Yu [1 ]
Liu, Shang-Kun [1 ]
Guo, Shi-Cheng [1 ]
Jiang, Cheng-Yu [1 ]
Zheng, Wei-Min [1 ]
Kim, Byung-Gyu
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
关键词
few-shot semantic segmentation; few-shot learning; self-distillation; self-support;
D O I
10.3390/electronics13010142
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the advent of large-scale datasets, significant advancements have been made in image semantic segmentation. However, the annotation of these datasets necessitates substantial human and financial resources. Therefore, the focus of research has shifted towards few-shot semantic segmentation, which leverages a small number of labeled samples to effectively segment unknown categories. The current mainstream methods are to use the meta-learning framework to achieve model generalization, and the main challenges are as follows. (1) The trained model will be biased towards the seen class, so the model will misactivate the seen class when segmenting the unseen class, which makes it difficult to achieve the idealized class agnostic effect. (2) When the sample size is limited, there exists an intra-class gap between the provided support images and the query images, significantly impacting the model's generalization capability. To solve the above two problems, we propose a network with prototype complementarity characteristics (PCNet). Specifically, we first generate a self-support query prototype based on the query image. Through the self-distillation, the query prototype and the support prototype perform feature complementary learning, which effectively reduces the influence of the intra-class gap on the model generalization. A standard semantic segmentation model is introduced to segment the seen classes during the training process to achieve accurate irrelevant class shielding. After that, we use the rough prediction map to extract its background prototype and shield the background in the query image by the background prototype. In this way, we obtain more accurate fine-grained segmentation results. The proposed method exhibits superiority in extensive experiments conducted on the PASCAL-5i and COCO-20i datasets. We achieve new state-of-the-art results in the few-shot semantic segmentation task, with an mIoU of 71.27% and 51.71% in the 5-shot setting, respectively. Comprehensive ablation experiments and visualization studies show that the proposed method has a significant effect on small-sample semantic segmentation.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Attentional prototype inference for few-shot segmentation
    Sun, Haoliang
    Lu, Xiankai
    Wang, Haochen
    Yin, Yilong
    Zhen, Xiantong
    Snoek, Cees G. M.
    Shao, Ling
    PATTERN RECOGNITION, 2023, 142
  • [2] Intermediate prototype network for few-shot segmentation
    Luo, Xiaoliu
    Duan, Zhao
    Zhang, Taiping
    SIGNAL PROCESSING, 2023, 203
  • [3] Interclass Prototype Relation for Few-Shot Segmentation
    Okazawa, Atsuro
    COMPUTER VISION, ECCV 2022, PT XXIX, 2022, 13689 : 362 - 378
  • [4] Holistic Prototype Activation for Few-Shot Segmentation
    Cheng, Gong
    Lang, Chunbo
    Han, Junwei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4650 - 4666
  • [5] Few-shot video object segmentation with prototype evolution
    Mao, Binjie
    Liu, Xiyan
    Shi, Linsu
    Yu, Jiazhong
    Li, Fei
    Xiang, Shiming
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (10): : 5367 - 5382
  • [6] Few-shot video object segmentation with prototype evolution
    Binjie Mao
    Xiyan Liu
    Linsu Shi
    Jiazhong Yu
    Fei Li
    Shiming Xiang
    Neural Computing and Applications, 2024, 36 : 5367 - 5382
  • [7] Variational Prototype Inference for Few-Shot Semantic Segmentation
    Wang, Haochen
    Yang, Yandan
    Cao, Xianbin
    Zhen, Xiantong
    Snoek, Cees
    Shao, Ling
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 525 - 534
  • [8] Adaptive Prototype Learning and Allocation for Few-Shot Segmentation
    Li, Gen
    Jampani, Varun
    Sevilla-Lara, Laura
    Sun, Deqing
    Kim, Jonghyun
    Kim, Joongkyu
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8330 - 8339
  • [9] Beyond singular prototype: A prototype splitting strategy for few-shot medical image segmentation
    Teng, Pengrui
    Liu, Wenjian
    Wang, Xuesong
    Wu, Di
    Yuan, Changan
    Cheng, Yuhu
    Huang, De-Shuang
    NEUROCOMPUTING, 2024, 597
  • [10] Dynamic Prototype Convolution Network for Few-Shot Semantic Segmentation
    Liu, Jie
    Bao, Yanqi
    Xie, Guo-Sen
    Xiong, Huan
    Sonke, Jan-Jakob
    Gavves, Efstratios
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 11543 - 11552