A deep convolutional neural network for efficient microglia detection

被引:3
|
作者
Suleymanova, Ilida [1 ]
Bychkov, Dmitrii [2 ]
Kopra, Jaakko [3 ]
机构
[1] Univ Helsinki, Helsinki Inst Life Sci HiLIFE, Fac Biol & Environm Sci, Helsinki, Finland
[2] Univ Helsinki, Inst Mol Med Finland FIMM, Helsinki Inst Life Sci HiLIFE, Helsinki, Finland
[3] Univ Helsinki, Fac Pharm, Div Pharmacol & Pharmacotherapy, Helsinki, Finland
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
关键词
CELL DETECTION; ACTIVATION; PAIN;
D O I
10.1038/s41598-023-37963-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microglial cells are a type of glial cells that make up 10-15% of all brain cells, and they play a significant role in neurodegenerative disorders and cardiovascular diseases. Despite their vital role in these diseases, developing fully automated microglia counting methods from immunohistological images is challenging. Current image analysis methods are inefficient and lack accuracy in detecting microglia due to their morphological heterogeneity. This study presents development and validation of a fully automated and efficient microglia detection method using the YOLOv3 deep learning-based algorithm. We applied this method to analyse the number of microglia in different spinal cord and brain regions of rats exposed to opioid-induced hyperalgesia/tolerance. Our numerical tests showed that the proposed method outperforms existing computational and manual methods with high accuracy, achieving 94% precision, 91% recall, and 92% F1-score. Furthermore, our tool is freely available and adds value to exploring different disease models. Our findings demonstrate the effectiveness and efficiency of our new tool in automated microglia detection, providing a valuable asset for researchers in neuroscience.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Breast Cancer Detection using Deep Convolutional Neural Network
    Mechria, Hana
    Gouider, Mohamed Salah
    Hassine, Khaled
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 655 - 660
  • [42] Detection of bars in galaxies using a deep convolutional neural network
    Abraham, Sheelu
    Aniyan, A. K.
    Kembhavi, Ajit K.
    Philip, N. S.
    Vaghmare, Kaustubh
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 477 (01) : 894 - 903
  • [43] CATARACT DETECTION AND GRADING BASED ON DEEP CONVOLUTIONAL NEURAL NETWORK
    Zhang, Hongyan
    Niu, Kai
    Xiong, Yanmin
    Yang, Weihua
    He, Zhiqiang
    Song, Hongxin
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [44] Deep Structured Convolutional Neural Network for Tomato Diseases Detection
    Suryawati, Endang
    Sustika, Rika
    Yuwana, R. Sandra
    Subekti, Agus
    Pardede, Hilman F.
    2018 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2018, : 385 - 390
  • [45] Smart Vessel Detection using Deep Convolutional Neural Network
    Joseph, Iwin Thanakumar S.
    Sasikala, J.
    Juliet, Sujitha D.
    Raj, Benson Edwin S.
    2018 FIFTH HCT INFORMATION TECHNOLOGY TRENDS (ITT): EMERGING TECHNOLOGIES FOR ARTIFICIAL INTELLIGENCE, 2018, : 28 - 32
  • [46] Fabric Defect Detection Using Deep Convolutional Neural Network
    Biradar, Maheshwari S.
    Shiparamatti, B.G.
    Patil, P.M.
    Optical Memory and Neural Networks (Information Optics), 2021, 30 (03): : 250 - 256
  • [47] Learn a Deep Convolutional Neural Network for Image Smoke Detection
    Liu, Maoshen
    Gu, Ke
    Wu, Li
    Xu, Xin
    Qiao, Junfei
    DIGITAL TV AND MULTIMEDIA COMMUNICATION, 2019, 1009 : 217 - 226
  • [48] Deep Convolutional Neural Network for Graphics Forgery Detection in Video
    Kaur, Harpreet
    Jindal, Neeru
    WIRELESS PERSONAL COMMUNICATIONS, 2020, 112 (03) : 1763 - 1781
  • [49] A Deep Convolutional Neural Network for the Early Detection of Heart Disease
    Arooj, Sadia
    Rehman, Saif Ur
    Imran, Azhar
    Almuhaimeed, Abdullah
    Alzahrani, A. Khuzaim
    Alzahrani, Abdulkareem
    BIOMEDICINES, 2022, 10 (11)
  • [50] Plant Disease Detection Using Deep Convolutional Neural Network
    Pandian, J. Arun
    Kumar, V. Dhilip
    Geman, Oana
    Hnatiuc, Mihaela
    Arif, Muhammad
    Kanchanadevi, K.
    APPLIED SCIENCES-BASEL, 2022, 12 (14):