Red blood cell trapping using single-beam acoustic tweezers in the Rayleigh regime

被引:5
|
作者
Yoo, Jinhee [1 ]
Kim, Jinhyuk [2 ]
Lee, Jungwoo [2 ]
Kim, Hyung Ham [1 ,3 ,4 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Sch Interdisciplinary Biosci & Bioengn, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
[2] Kwangwoon Univ, Dept Elect Engn, Seoul 01897, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Dept Convergence IT Engn, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
[4] Pohang Univ Sci & Technol POSTECH, Dept Elect Engn, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
MANIPULATION; MEMBRANES;
D O I
10.1016/j.isci.2023.108178
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acoustic tweezers (ATs) are a promising technology that can trap and manipulate microparticles or cells with the focused ultrasound beam without physical contact. Unlike optical tweezers, ATs may be used for in vivo studies because they can manipulate cells through tissues. However, in previous non-invasive microparticle trapping studies, ATs could only trap spherical particles, such as beads. Here, we present a theoretical analysis of how the acoustic beam traps red blood cells (RBCs) with experimental demonstration. The proposed modeling shows that the trapping of a non-spherical, biconcave-shaped RBC could be successfully done by single-beam acoustic tweezers (SBATs). We demonstrate this by trapping RBCs using SBATs in the Rayleigh regime, where the cell size is smaller than the wavelength of the beam. Suggested SBAT is a promising tool for cell transportation and sorting.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Detection of the bottom facies characteristics at El Zeit Bay, Red Sea, by using a single-beam acoustic sound
    Amr Z. Hamouda
    Mahamed Abd El-Wahhab
    Oceanology, 2012, 52 : 60 - 71
  • [32] Pitch-rotational manipulation of single cells and particles using single-beam thermo-optical tweezers
    Kumar, Sumeet
    Gunaseelan, M.
    Vaippully, Rahul
    Kumar, Amrendra
    Ajith, Mithun
    Vaidya, Gaurav
    Dutta, Soumya
    Roy, Basudev
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (07) : 3555 - 3566
  • [33] Single-beam acoustic variability associated with seabed habitats
    Mamede, Renato
    Rodrigues, Ana Maria
    Freitas, Rosa
    Quintino, Victor
    JOURNAL OF SEA RESEARCH, 2015, 100 : 152 - 159
  • [34] MIXING, TRAPPING, AND EJECTION OF SINGLE MICROPARTICLE WITH SIZE AND MATERIAL SELECTIVITY USING ACOUSTIC TWEEZERS
    Neff, Baptiste
    Roy, Akash
    Esfahani, Kianoush Sadeghian
    Kim, Eun S.
    2024 IEEE 37TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, MEMS, 2024, : 340 - 343
  • [35] SINGLE-BEAM OPTICO-ACOUSTIC GAS ANALYSER
    VEINGEROV, ML
    SIVKOV, AA
    OPTIKA I SPEKTROSKOPIYA, 1960, 8 (05): : 735 - 735
  • [36] Quantification of Dysnatremia Using Single-Beam Acoustic Microbeam and Convolutional Neural Networks
    Nam, Ji Won
    Jeon, Hyeon-Ju
    Lee, Jeong Eun
    Lee, O-Joun
    Lim, Hae Gyun
    IEEE SENSORS JOURNAL, 2024, 24 (07) : 9626 - 9638
  • [37] Why Single-Beam Optical Tweezers Trap Gold Nanowires in Three Dimensions
    Yan, Zijie
    Pelton, Matthew
    Vigderman, Leonid
    Zubarev, Eugene R.
    Scherer, Norbert F.
    ACS NANO, 2013, 7 (10) : 8794 - 8800
  • [38] Annular spherically focused ring transducers for improved single-beam acoustical tweezers
    Mitri, F. G.
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (06)
  • [39] Collapse pressure measurement of single hollow glass microsphere using single-beam acoustic tweezer
    Yoo, Jinhee
    Kim, Hyunhee
    Kim, Yeonggeun
    Lim, Hae Gyun
    Kim, Hyung Ham
    ULTRASONICS SONOCHEMISTRY, 2022, 82
  • [40] Spherical vortex beams of high radial degree for enhanced single-beam tweezers
    1600, American Institute of Physics Inc. (113):