Sequential recommendation based on multipair contrastive learning with informative augmentation

被引:0
|
作者
Yin, Pei [1 ,2 ]
Zhao, Jun [1 ]
Ma, Zi-jie [1 ]
Tan, Xiao [1 ]
机构
[1] Univ Shanghai Sci & Technol, Business Sch, Shanghai 200093, Peoples R China
[2] Univ Shanghai Sci & Technol, Sch Intelligent Emergency Management, Shanghai 200093, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 36卷 / 17期
关键词
Sequential recommendation; Data sparsity; Self-attention network; Contrastive learning; Representation learning;
D O I
10.1007/s00521-023-09044-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To solve the recommendation accuracy degradation problem encountered in sequential recommendation cases caused by data sparsity-such as short historical user behaviour sequences and limited information-this paper proposes a sequential recommendation model based on multipair contrastive learning with informative augmentation (IA-MPCL). The model aims to better learn user preference representations. Initially, a self-attention network is utilized to maintain the intrinsic relevance of the original sequences and introduce virtual interaction items for short sequences to achieve informative enhancement. Subsequently, multiple positive samples are generated by data augmentation methods to form multiple pairs of positive and negative samples. A multipair contrastive loss is constructed to eliminate the negative impact of fake positive and negative samples on the training process of the self-attention network. Finally, an adaptive loss weighting mechanism is proposed to dynamically regulate the role of the contrastive loss during multitask training. Through comparison experiments involving baseline methods and experiments conducted on datasets with different sparsity levels, the results show that IA-MPCL achieves significant improvements in terms of both recommendation accuracy and data sparsity resistance.
引用
收藏
页码:9707 / 9721
页数:15
相关论文
共 50 条
  • [41] Knowledge-Guided Semantically Consistent Contrastive Learning for sequential recommendation
    Shi, Chenglong
    Yan, Surong
    Zhang, Shuai
    Wang, Haosen
    Lin, Kwei-Jay
    NEURAL NETWORKS, 2025, 185
  • [42] Pattern-enhanced Contrastive Policy Learning Network for Sequential Recommendation
    Tong, Xiaohai
    Wang, Pengfei
    Li, Chenliang
    Xia, Long
    Niu, Shaozhang
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 1593 - 1599
  • [43] Feature-Aware Contrastive Learning With Bidirectional Transformers for Sequential Recommendation
    Du, Hanwen
    Yuan, Huanhuan
    Zhao, Pengpeng
    Wang, Deqing
    Sheng, Victor S.
    Liu, Yanchi
    Liu, Guanfeng
    Zhao, Lei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8192 - 8205
  • [44] Contrastive Learning with Frequency-Domain Interest Trends for Sequential Recommendation
    Zhang, Yichi
    Yin, Guisheng
    Dong, Yuxin
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 141 - 150
  • [45] Contrastive Learning for Session-Based Recommendation
    Chen, Yan
    Qian, Wanhui
    Liu, Dongqin
    Su, Yipeng
    Zhou, Yan
    Han, Jizhong
    Li, Ruixuan
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 358 - 369
  • [46] Graph Neural Network-Guided Contrastive Learning for Sequential Recommendation
    Yang, Xing-Yao
    Xu, Feng
    Yu, Jiong
    Li, Zi-Yang
    Wang, Dong-Xiao
    SENSORS, 2023, 23 (12)
  • [47] A multi-intent based multi-policy relay contrastive learning for sequential recommendation
    Di W.
    PeerJ Computer Science, 2022, 8
  • [48] Multi-interest sequential recommendation with contrastive learning and temporal analysis
    Ma, Xiaowen
    Zhou, Qiang
    Li, Yongjun
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [49] Knowledge-based recommendation with contrastive learning
    He, Yang
    Zheng, Xu
    Xu, Rui
    Tian, Ling
    HIGH-CONFIDENCE COMPUTING, 2023, 3 (04):
  • [50] Temporal Density-aware Sequential Recommendation Networks with Contrastive Learning
    Wang, Jihu
    Shi, Yuliang
    Yu, Han
    Zhang, Kun
    Wang, Xinjun
    Yan, Zhongmin
    Li, Hui
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211