Workability, autogenous shrinkage and microstructure of alkali-activated slag/fly ash slurries: Effect of precursor composition and sodium silicate modulus

被引:36
|
作者
Luo, Ling [1 ,2 ]
Yao, Wu [1 ]
Liang, Guangwei [1 ]
Luo, Yu [3 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Key Lab Adv Civil Engn Mat, Minist Educ, Shanghai 201804, Peoples R China
[2] Xinjiang Univ, Coll Civil Engn & Architecture, Urumqi 830017, Peoples R China
[3] Urban Construct Investment Grp Co Ltd, Guizhou, Qianxinan, Peoples R China
来源
关键词
Strength; Autogenous shrinkage; Alkali-activated slag-fly ash; Microstructure; Porosity; BLAST-FURNACE SLAG; FLY-ASH; DRYING SHRINKAGE; GEOPOLYMER; STRENGTH; CONCRETE; DURABILITY; MORTAR; PASTES; DOSAGE;
D O I
10.1016/j.jobe.2023.106712
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The alkali-activated slag/fly ash system is used as a cementitious material to instead of ordinary Portland cement and has good application prospects for recycling various solid wastes and low carbonization in the construction field. In this work, we aim to reveal the effects of changes in precursor composition and sodium silicate modulus in alkali-activated slag/fly ash slurry on strength and autogenous shrinkage, and make a comparative study about workability, autogenous shrinkage and microstructure. The test results showed that the engineering performance of alkali-activated cementitious materials mainly depended on the constituent materials and their ratios. With the increase of fly ash content, the slump was enhanced, the setting time was extended, the strength was slightly reduced, and the autogenous shrinkage was significantly mitigated. For the reference slurry (n = 1.2), the 28 d autogenous shrinkage value of S10F0 was 6064.28 & mu;m/m, the 28 d autogenous shrinkage value of S9F1 was 1516.67 & mu;m/m, and the shrinkage value was reduced by 75%. And with the increase of sodium silicate modulus, the slump was enhanced, the setting time was increased, the early strength was reduced, the later strength developed faster, and the influence on the sample autogenous shrinkage was smaller. The reaction products were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). With the increase of fly ash content, the calcite phase was observed in the reacted products, the flocculent components and many unreacted fly ash spheres in diameter were observed, and there were many micro-pores in the hardened solid particles. Combined with autogenous shrinkage and mercury intrusion porosimetry analysis, it could be discovered that when the modulus of sodium silicate increased, the capillary pore volume increased, and the total porosity and pore size decreased significantly, when the modulus of the activator increased from 1.2 to 2.0, the porosity decreased by 44.36%. making the autogenous shrinkage and strength increase. When the activator modulus was 1.2 and the content of fly ash was more than 30%, the content of NaOH in the solution was higher, which accelerated the early reaction rate, resulting in more pores inside the slurry, larger pore size, smaller capillary pore volume, and expansion of alkali-activated material slurry volume. This study may shed valuable insights to the improvement of autogenous shrinkage by adjusting precursor composition and sodium silicate modulus.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Shrinkage and strength development of alkali-activated fly ash-slag binary cements
    Hojati, Maryam
    Radlinska, Aleksandra
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 150 : 808 - 816
  • [42] Shrinkage of Alkali-Activated Combined Slag and Fly Ash Concrete Cured at Ambient Temperature
    Rodrigue, Alexandre
    Bissonnette, Benoit
    Duchesne, Josee
    Fournier, Benoit
    ACI MATERIALS JOURNAL, 2022, 119 (03) : 15 - 23
  • [43] Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages
    Lee, N. K.
    Jang, J. G.
    Lee, H. K.
    CEMENT & CONCRETE COMPOSITES, 2014, 53 : 239 - 248
  • [44] Controlling workability in alkali-activated Class C fly ash
    Rakngan, Watanyoo
    Williamson, Trevor
    Ferron, Raissa D.
    Sant, Gaurav
    Juenger, Maria C. G.
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 183 : 226 - 233
  • [45] Effect of sodium sulfate on strength and microstructure of alkali-activated fly ash based geopolymer
    Lv, Qing-feng
    Wang, Zi-shuai
    Gu, Liu-yang
    Chen, Yi
    Shan, Xiao-kang
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2020, 27 (06) : 1691 - 1702
  • [46] Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h
    Fang, Guohao
    Bahrami, Hossein
    Zhang, Mingzhong
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 171 : 377 - 387
  • [47] Effect of natural carbonation on the pore structure and elastic modulus of the alkali-activated fly ash and slag pastes
    Nedeljkovic, Marija
    Savija, Branko
    Zuo, Yibing
    Lukovic, Mladena
    Ye, Guang
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 161 : 687 - 704
  • [48] Autogenous shrinkage and sustainability assessment of alkali-activated slag incorporating steel slag
    Li, Kang
    Yang, Zhengxian
    Nicolaides, Demetris
    Liang, Minfei
    Briseghella, Bruno
    Marano, Giuseppe Carlo
    Zhang, Yong
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 438
  • [49] Effect of sodium silicate on the properties of loess stabilized with alkali-activated fly ash-based
    Gu, Liuyang
    Lv, Qingfeng
    Wang, Shuhua
    Xiang, Junran
    Guo, Lianxing
    Jiang, Jianhui
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 280
  • [50] Effect of Polyphosphates on Properties of Alkali-Activated Slag/Fly Ash Concrete
    Mosleh, Youssef A.
    Gharieb, Mahmoud
    Rashad, Alaa M.
    ACI MATERIALS JOURNAL, 2023, 120 (02) : 65 - 76