Wet spinning and 3D printing of supramolecular hydrogels in acid-base and dynamic conditions

被引:3
|
作者
Andriamiseza, Faniry [1 ]
Peters, Salome [1 ]
Roux, Clement [1 ]
Dietrich, Nicolas [2 ]
Coudret, Christophe [1 ]
Fitremann, Juliette [1 ,3 ]
机构
[1] Univ Toulouse III Paul Sabatier, Univ Toulouse, Lab IMRCP, CNRS UMR 5623, Toulouse, France
[2] Univ Toulouse, Toulouse Biotechnol Inst, CNRS, INRAE,INSA, Toulouse, France
[3] Univ Paul Sabatier Toulouse III, Lab IMRCP, Batiment 2R1,118 Route Narbonne, F-31062 Toulouse 9, France
关键词
Molecular gel; Hydrogel; Supramolecular; LMWG; Low Molecular Weight Gelator self-assembly; Saccharide; Carbohydrate; Galactose; Wet spinning; Injectable; Injection; Noodle; Thread; Jet; Liquid-liquid interface; Interfacial reaction; mixing 3D printing; pH; biocompatible; MOLECULAR-WEIGHT GELS; CHEMICAL GARDENS; RELEASE; FIBERS; LENGTH;
D O I
10.1016/j.colsurfa.2023.131765
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
N-alkyl-D-galactonamides give biocompatible hydrogels that are very delicate and not injectable. To circumvent their mechanical fragility and the injectability issue, we have developed a method of injection based on solvent-water exchange. A solution of the gelator in a good solvent is injected vertically in a bath of water. The diffusion of water inside the solvent jet triggers the fast self-assembly of the N-alkyl-D-galactonamides into supramolecular fibers. It leads to the formation of well-defined gel filaments. We first used dimethylsulfoxide (DMSO) as the good solvent of N-alkyl-D-galactonamides. Then, we considered to get rid of this organic solvent by implementing an "all-aqueous method", paving the way to green chemistry methods. Despite the fact that these molecules do not have conventional acid-base functions in water, N-alkyl-D-galactonamides can be deprotonated and solubilized in highly concentrated NaOH aqueous solutions. As with DMSO, the basic solution is denser than the solution in the bath. Thus, a well-defined vertical jet falls down when the solution is injected in an acidic aqueous solution. The neutralization of the base at the acid-base interface triggers the gelation and leads to the formation of well-defined gel filaments as well. The acid-base reaction at the interface has been visualized by colored pH in-dicators. With phenol red (pKa = 7.9), a pink-to-yellow V-shaped "flame" transition is clearly observed. A similar transition from colorless-to-pink is observed with the pH indicator acid fuchsin, which pKa = 13 is close to the N-heptyl-D-galactonamide pKa. The distance from the nozzle of this transition zone is directly related to the injection rate, which is well-described by a model. We also applied this method to 3D printing, by a liquid-in liquid direct writing. It gives well-resolved patterns. The opportunity to get noodles or 3D printed patterns made of single small molecules by acid-base exchange opens new perspectives. Notably, the supramolecular fibers could be used to support and direct the formation of inorganic materials with original microstructures.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] 3D Printing of Solvent-Free Supramolecular Polymers
    Rupp, Harald
    Binder, Wolfgang H.
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [32] Recent advances in 3D printing of tough hydrogels: A review
    Zhang, Xin Ning
    Zheng, Qiang
    Wu, Zi Liang
    COMPOSITES PART B-ENGINEERING, 2022, 238
  • [33] Cell-Laden Hydrogels for Multikingdom 3D Printing
    Johnston, Trevor G.
    Fillman, Jacob P.
    Priks, Hans
    Butelmann, Tobias
    Tamm, Tarmo
    Kumar, Rahul
    Lahtvee, Petri-Jaan
    Nelson, Alshakim
    MACROMOLECULAR BIOSCIENCE, 2020, 20 (08)
  • [34] 3D Printing Polymers with Supramolecular Functionality for Biological Applications
    Pekkanen, Allison M.
    Mondschein, Ryan J.
    Williams, Christopher B.
    Long, Timothy E.
    BIOMACROMOLECULES, 2017, 18 (09) : 2669 - 2687
  • [35] Hydrogels-A Promising Materials for 3D Printing Technology
    Kaliaraj, Gobi Saravanan
    Shanmugam, Dilip Kumar
    Dasan, Arish
    Mosas, Kamalan Kirubaharan Amirtharaj
    GELS, 2023, 9 (03)
  • [36] Hofmeister effect induced advancement of the hydrogels by 3D printing
    Zhao, Weiwei
    Yao, Chenggui
    Pan, Longhui
    Li, Ziao
    Liu, Qimin
    Liu, Li
    POLYMER, 2023, 282
  • [37] Toughened Hydrogels for 3D Printing of Soft Auxetic Structures
    Pruksawan, Sirawit
    Chee, Heng Li
    Wang, Zizhen
    Luo, Ping
    Chong, Yi Ting
    Thitsartarn, Warintorn
    Wang, FuKe
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (19)
  • [38] 3D Printing of Multifunctional Conductive Polymer Composite Hydrogels
    Liu, Ji
    Garcia, James
    Leahy, Liam M. M.
    Song, Rijian
    Mullarkey, Daragh
    Fei, Ban
    Dervan, Adrian
    Shvets, Igor V. V.
    Stamenov, Plamen
    Wang, Wenxin
    O'Brien, Fergal J. J.
    Coleman, Jonathan N. N.
    Nicolosi, Valeria
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (37)
  • [39] Multiphoton 3D Printing of Biopolymer-Based Hydrogels
    Parkatzidis, Kostas
    Chatzinikolaidou, Maria
    Kaliva, Maria
    Bakopoulou, Athina
    Farsari, Maria
    Vamvakaki, Maria
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2019, 5 (11): : 6161 - 6170
  • [40] Rapid 3D printing of electro-active hydrogels
    Wang, Wenbo
    Liu, Siying
    Yu, Mingqi
    Chen, Xiangfan
    Manufacturing Letters, 2024, 41 : 862 - 867