Integrated biomarker profiling of the metabolome associated with type 2 diabetes mellitus among Tibetan in China

被引:2
|
作者
Meng, Jinli [1 ]
Huang, Fangfang [2 ]
Shi, Jing [3 ,4 ]
Zhang, Chenghui [5 ]
Feng, Li [1 ]
Wang, Suyuan [5 ]
Li, Hengyan [1 ]
Guo, Yongyue [1 ]
Hu, Xin [1 ]
Li, Xiaomei [1 ]
He, Wanlin [1 ]
Cheng, Jian [6 ]
Wu, Yunhong [5 ]
机构
[1] Hosp Chengdu Off Peoples Govt Tibetan Autonomous R, Dept Radiol, 20 Xi Mian Qiao Heng Jie, Chengdu, Sichuan, Peoples R China
[2] Hubei Univ Chinese Med, Wuhan 430065, Peoples R China
[3] Hosp Chengdu Off Peoples Govt Tibetan Autonomous R, Dept Sci, 20 Xi Mian Qiao Heng Jie, Chengdu, Sichuan, Peoples R China
[4] Hosp Chengdu Off Peoples Govt Tibetan Autonomous R, Educ Sect, 20 Xi Mian Qiao Heng Jie, Chengdu, Sichuan, Peoples R China
[5] Hosp Chengdu Off Peoples Govt Tibetan Autonomous R, Dept Endocrinol & Metab, 20 Xi Mian Qiao Heng Jie, Chengdu, Sichuan, Peoples R China
[6] Sichuan Univ, West China Hosp, Dept Neurosurg, Chengdu, Peoples R China
来源
DIABETOLOGY & METABOLIC SYNDROME | 2023年 / 15卷 / 01期
关键词
Tibetan; Type 2 diabetes mellitus; Serum metabolomics; Machine learning; Biomarker; SERUM URIC-ACID; INSULIN-RESISTANCE; FASTING GLUCOSE; PLASMA-GLUCOSE; PREVALENCE; RISK; PROGRESSION; MARKERS; HEALTH;
D O I
10.1186/s13098-023-01124-8
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
IntroductionMetabolomic signatures of type 2 diabetes mellitus (T2DM) in Tibetan Chinese population, a group with high diabetes burden, remain largely unclear. Identifying the serum metabolite profile of Tibetan T2DM (T-T2DM) individuals may provide novel insights into early T2DM diagnosis and intervention.MethodsHence, we conducted untargeted metabolomics analysis of plasma samples from a retrospective cohort study with 100 healthy controls and 100 T-T2DM patients by using liquid chromatography-mass spectrometry.ResultsThe T-T2DM group had significant metabolic alterations that are distinct from known diabetes risk indicators, such as body mass index, fasting plasma glucose, and glycosylated hemoglobin levels. The optimal metabolite panels for predicting T-T2DM were selected using a tenfold cross-validation random forest classification model. Compared with the clinical features, the metabolite prediction model provided a better predictive value. We also analyzed the correlation of metabolites with clinical indices and found 10 metabolites that were independently predictive of T-T2DM.ConclusionBy using the metabolites identified in this study, we may provide stable and accurate biomarkers for early T-T2DM warning and diagnosis. Our study also provides a rich and open-access data resource for optimizing T-T2DM management.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] PREVALENCE AND FACTORS ASSOCIATED WITH OVERWEIGHT AMONG PATIENTS WITH TYPE 2 DIABETES MELLITUS
    de Almeida, Jakeline Diana
    Soares, Bianca de Fatima
    Leao, Nardjara
    Teixeira, Romero Alves
    Macedo, Mariana de Souza
    Freitas, Ronilson Ferreira
    Lessa, Angelina do Carmo
    REVISTA UNIVAP, 2022, 28 (57)
  • [22] FREQUENCY AND FACTORS ASSOCIATED WITH DYSLIPIDEMIA AMONG PEOPLE WITH TYPE 2 DIABETES MELLITUS
    Garcia Lira Neto, Jose Claudio
    Silva, Taynara Lais
    da Silva, Isaac Goncalves
    de Carvalho Felix, Nuno Damacio
    Maranhao, Thatiana Araujo
    Coelho Damasceno, Marta Maria
    REVISTA DE PESQUISA-CUIDADO E FUNDAMENTAL ONLINE, 2022, 14
  • [23] Integrated Transcriptomics and Proteomics Identified CMPK1 as a Potential Biomarker for Type 2 Diabetes Mellitus
    Zhao, Kang
    Mao, Rui
    Yi, Wei
    Ren, Zhengyun
    Liu, Yanjun
    Yang, Huawu
    Wang, Senlin
    Feng, Zhonghui
    DIABETES METABOLIC SYNDROME AND OBESITY, 2024, 17 : 2923 - 2934
  • [24] PPGAI index as a photoplethysmographic biomarker for type 2 diabetes mellitus
    Gentilin, Alessandro
    Cevese, Antonio
    ENDOCRINOLOGIA DIABETES Y NUTRICION, 2025, 72 (02):
  • [25] The future of protein biomarker research in type 2 diabetes mellitus
    Tans, Roel
    Verschuren, Lars
    Wessels, Hans J. C. T.
    Bakker, Stephan J. L.
    Tack, Cees J.
    Gloerich, Jolein
    van Gool, Alain J.
    EXPERT REVIEW OF PROTEOMICS, 2019, 16 (02) : 105 - 115
  • [26] Lipidomics Profiling of Metformin-Induced Changes in Obesity and Type 2 Diabetes Mellitus: Insights and Biomarker Potential
    Mujammami, Muhammad
    Aleidi, Shereen M.
    Buzatto, Adriana Zardini
    Alshahrani, Awad
    AlMalki, Reem H.
    Benabdelkamel, Hicham
    Al Dubayee, Mohammed
    Li, Liang
    Aljada, Ahmad
    Abdel Rahman, Anas M.
    PHARMACEUTICALS, 2023, 16 (12)
  • [27] Sleep Patterns, Plasma Metabolome, and Risk of Incident Type 2 Diabetes Mellitus
    Zhuang, Zhenhuang
    Dong, Xue
    Jia, Jinzhu
    Liu, Zhonghua
    Huang, Tao
    Qi, Lu
    JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2023, 108 (10): : E1034 - E1043
  • [28] Profiling peripheral microRNAs in obesity and type 2 diabetes mellitus
    Wu, Liangping
    Dai, Xiaojiang
    Zhan, Junfang
    Zhang, Yuxin
    Zhang, Hongbin
    Zhang, Hongbing
    Zeng, Songhua
    Xi, Wenbin
    APMIS, 2015, 123 (07) : 580 - 585
  • [29] Prevalence of Anxiety and Associated Factors Among Inpatients with Type 2 Diabetes Mellitus in China: A Cross-Sectional Study
    Rehanguli Maimaitituerxun
    Wenhang Chen
    Jingsha Xiang
    Yu Xie
    Atipatsa C. Kaminga
    Xin Yin Wu
    Letao Chen
    Jianzhou Yang
    Aizhong Liu
    Wenjie Dai
    Psychiatric Quarterly, 2023, 94 : 371 - 383
  • [30] Prevalence of Anxiety and Associated Factors Among Inpatients with Type 2 Diabetes Mellitus in China: A Cross-Sectional Study
    Maimaitituerxun, Rehanguli
    Chen, Wenhang
    Xiang, Jingsha
    Xie, Yu
    Kaminga, Atipatsa C.
    Wu, Xin Yin
    Chen, Letao
    Yang, Jianzhou
    Liu, Aizhong
    Dai, Wenjie
    PSYCHIATRIC QUARTERLY, 2023, 94 (3) : 371 - 383