Lattice Smooth Variable Structure Filter for Maneuvering Target Tracking with Model Uncertainty

被引:2
|
作者
Jiao, Yuzhao [1 ]
Lou, Taishan [1 ]
Zhao, Liangyu [2 ]
Zhao, Hongmei [1 ]
Lu, Yingbo [1 ]
机构
[1] Zhengzhou Univ Light Ind, Sch Elect & Informat Engn, Zhengzhou 450001, Peoples R China
[2] Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Lattice sampling; Smooth variable structure filter; Optimal smooth boundary layer; Nonlinear uncertainty systems; Maneuvering target tracking; STATE ESTIMATION; KALMAN;
D O I
10.1007/s40998-023-00609-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new lattice smooth variable structure filter (LSVSF) for maneuvering target tracking with model uncertainty. Under the assumption that the probability density function (PDF) is Gaussian-distributed, the nonlinear smooth variable structure filter (SVSF) framework is reconstructed by Bayesian theory. The optimal smooth boundary layer (OSBL) calculation form of the SVSF in a nonlinear framework is proposed. Then, based on lattice sampling methods with low computational complexity, the LSVSF algorithm is obtained. Finally, the LSVSF algorithm is verified on the maneuvering target tracking problem with model uncertainty by three scenarios: uniform motion (UM), coordinated turn (CT) motion and mixed motion (UM and CT). According to the simulation, the proposed LSVSF algorithm has superior tracking accuracy and robustness.
引用
收藏
页码:1689 / 1701
页数:13
相关论文
共 50 条
  • [21] Variable γ H∞ filter for a maneuvering target tracking using acceleration estimate
    Hashirao, Masataka
    Kawase, Tetsuya
    Sasase, Iwao
    IEEE National Radar Conference - Proceedings, 2000, : 76 - 80
  • [22] The uncertainty learning filter: A revised smooth variable structure filter
    Spiller, Mark
    Bakhshande, Fateme
    Soeffker, Dirk
    SIGNAL PROCESSING, 2018, 152 : 217 - 226
  • [23] Variable structure T–S fuzzy model and its application in maneuvering target tracking
    Xiao-li Wang
    Wei-xin Xie
    Liang-qun Li
    Fuzzy Optimization and Decision Making, 2023, 22 : 289 - 308
  • [24] Target tracking for maneuvering targets using multiple model filter
    Kameda, Hiroshi
    Matsuzaki, Takashi
    Kosuge, Yoshio
    IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2002, E85-A (03) : 573 - 581
  • [25] Multiple Model Truncated Particle Filter for Maneuvering Target Tracking
    Ma Cheng
    San Ye
    Zhu Yi
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 4773 - 4777
  • [26] Improved Interactive Multiple Model Filter for Maneuvering Target Tracking
    Li, Bo
    Pang, Fuwen
    Liang, Ce
    Chen, Xiaohong
    Liu, Yunfeng
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 7312 - 7316
  • [27] Target tracking for maneuvering targets using multiple model filter
    Kameda, H
    Matsuzaki, T
    Kosuge, Y
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (03): : 573 - 581
  • [28] Partitioned Time-Varying Smooth Variable Structure Filter for Airport Target Tracking
    Li, Wenjuan
    Gu, Hong
    Su, Weimin
    2016 CIE INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2016,
  • [29] A new strategy of smooth variable structure filter to estimate unmeasured states in target tracking
    Chen, Yu
    Wang, Guangmin
    Xu, Luping
    Yan, Bo
    DIGITAL SIGNAL PROCESSING, 2022, 123
  • [30] Cognitive Structure Model Maneuvering Target Tracking Algorithm
    Wang S.-L.
    Bi D.-P.
    Liu B.
    Du M.-Y.
    Yuhang Xuebao/Journal of Astronautics, 2019, 40 (01): : 69 - 76