Antiferromagnetic metal phase in an electron-doped rare-earth nickelate

被引:16
|
作者
Song, Qi [1 ]
Doyle, Spencer [1 ]
Pan, Grace A. [1 ]
El Baggari, Ismail [2 ]
Segedin, Dan Ferenc [1 ]
Carrizales, Denisse Cordova [1 ]
Nordlander, Johanna [1 ]
Tzschaschel, Christian [3 ]
Ehrets, James R. [1 ]
Hasan, Zubia [1 ]
El-Sherif, Hesham [2 ]
Krishna, Jyoti [4 ]
Hanson, Chase [4 ]
LaBollita, Harrison [4 ]
Bostwick, Aaron [5 ]
Jozwiak, Chris [5 ]
Rotenberg, Eli [5 ]
Xu, Su-Yang [3 ]
Lanzara, Alessandra [6 ,7 ]
N'Diaye, Alpha T. [5 ]
Heikes, Colin A. [8 ,9 ,10 ]
Liu, Yaohua [11 ,12 ]
Paik, Hanjong [13 ,14 ,15 ]
Brooks, Charles M. [1 ]
Pamuk, Betuel
Heron, John T. [16 ]
Shafer, Padraic [5 ]
Ratcliff, William D. [8 ]
Botana, Antia S. [4 ]
Moreschini, Luca [6 ,7 ,13 ]
Mundy, Julia A. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, Rowland Inst Harvard, Cambridge, MA USA
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA USA
[4] Arizona State Univ, Dept Phys, Tempe, AZ USA
[5] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
[6] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[7] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[8] NIST, NIST Ctr Neutron Res, Gaithersburg, MD USA
[9] NIST, Joint Quantum Inst, Gaithersburg, MD USA
[10] Univ Maryland, Dept Mat Sci & Engn, Gaithersburg, MD USA
[11] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN USA
[12] Oak Ridge Natl Lab, Target Stn 2, Oak Ridge, TN USA
[13] Cornell Univ, Platform Accelerated Realizat Anal & Discovery Int, Ithaca, NY 14850 USA
[14] Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK USA
[15] Univ Oklahoma, Ctr Quantum Res & Technol CQRT, Norman, OK USA
[16] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI USA
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
INSULATOR-TRANSITION; RNIO3; R; HOLE;
D O I
10.1038/s41567-022-01907-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Long viewed as passive elements, antiferromagnetic materials have emerged as promising candidates for spintronic devices due to their insensitivity to external fields and potential for high-speed switching. Recent work exploiting spin and orbital effects has identified ways to electrically control and probe the spins in metallic antiferromagnets, especially in non-collinear or non-centrosymmetric spin structures. The rare-earth nickelate NdNiO3 is known to be a non-collinear antiferromagnet in which the onset of antiferromagnetic ordering is concomitant with a transition to an insulating state. Here we find that for low electron doping, the magnetic order on the nickel site is preserved, whereas electronically, a new metallic phase is induced. We show that this metallic phase has a Fermi surface that is mostly gapped by an electronic reconstruction driven by bond disproportionation. Furthermore, we demonstrate the ability to write to and read from the spin structure via a large zero-field planar Hall effect. Our results expand the already rich phase diagram of rare-earth nickelates and may enable spintronics applications in this family of correlated oxides. Films of the correlated oxide NdNiO3 form a metallic antiferromagnetic phase that can be identified using electrical currents, raising the prospect of applications in spintronics.
引用
收藏
页码:522 / +
页数:10
相关论文
共 50 条
  • [1] Antiferromagnetic metal phase in an electron-doped rare-earth nickelate
    Qi Song
    Spencer Doyle
    Grace A. Pan
    Ismail El Baggari
    Dan Ferenc Segedin
    Denisse Córdova Carrizales
    Johanna Nordlander
    Christian Tzschaschel
    James R. Ehrets
    Zubia Hasan
    Hesham El-Sherif
    Jyoti Krishna
    Chase Hanson
    Harrison LaBollita
    Aaron Bostwick
    Chris Jozwiak
    Eli Rotenberg
    Su-Yang Xu
    Alessandra Lanzara
    Alpha T. N’Diaye
    Colin A. Heikes
    Yaohua Liu
    Hanjong Paik
    Charles M. Brooks
    Betül Pamuk
    John T. Heron
    Padraic Shafer
    William D. Ratcliff
    Antia S. Botana
    Luca Moreschini
    Julia A. Mundy
    Nature Physics, 2023, 19 : 522 - 528
  • [2] Phase formation in hole- and electron-doped rare-earth nickelate single crystals
    Puphal, P.
    Sundaramurthy, V.
    Zimmermann, V.
    Kuester, K.
    Starke, U.
    Isobe, M.
    Keimer, B.
    Hepting, M.
    APL MATERIALS, 2023, 11 (08)
  • [3] Spin dynamics in the antiferromagnetic phase of electron-doped cuprate superconductors
    Yuan, QS
    Lee, TK
    Ting, CS
    PHYSICAL REVIEW B, 2005, 71 (13):
  • [4] Electron-hole asymmetry in the rare-earth manganates: A comparative study of the hole- and the electron-doped materials
    Sarathy, KV
    Vanitha, PV
    Seshadri, R
    Cheetham, AK
    Rao, CNR
    CHEMISTRY OF MATERIALS, 2001, 13 (03) : 787 - 795
  • [5] Crossover from low-temperature itinerant to high-temperature localized electron behavior in the electron-doped rare-earth metal cobaltate perovskites
    Ramos, S. L. L. M.
    Oguni, M.
    Masuda, Y.
    Inada, Y.
    PHYSICAL REVIEW B, 2011, 83 (08)
  • [6] Mapping orthorhombic domains with geometrical phase analysis in rare-earth nickelate heterostructures
    Mundet, Bernat
    Hadjimichael, Marios
    Fowlie, Jennifer
    Korosec, Lukas
    Varbaro, Lucia
    Dominguez, Claribel
    Triscone, Jean-Marc
    Alexander, Duncan T. L.
    APL MATERIALS, 2024, 12 (03)
  • [7] Electronic excitations in the antiferromagnetic phase of electron-doped high-Tc cuprates
    Tohyama, T
    Maekawa, S
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2002, 378 : 178 - 181
  • [8] Unexplored signatures of magnetoelastic and isosymmetric metal-insulator phase transition in a rare-earth nickelate via mode crystallography
    Kumar, Harsh
    Singh, Anar
    Martinez, Jose Luis
    Alonso, Jose Antonio
    Tripathi, Saurabh
    PHYSICAL REVIEW B, 2022, 106 (21)
  • [9] Controllable growth and electronic phase transitions for metastable perovskite rare-earth nickelate films
    Zhou, Xuan-Chi
    Jiao, Yong-Jie
    ACTA PHYSICA SINICA, 2024, 73 (19)
  • [10] Absence of ferromagnetism in electron-doped rare-earth manganates, Ln1-xAxMnO3 (x > 0.5)
    Vanitha, PV
    Sarathy, KV
    Cheetham, AK
    Rao, CNR
    SOLID STATE COMMUNICATIONS, 2000, 115 (09) : 463 - 466