A new Neural Network architecture for Time Series Classification

被引:0
|
作者
Incardona, S. [1 ]
Tripodo, G.
Buscemi, M.
Shahvar, M. P.
Marsella, G.
机构
[1] Univ Palermo, Dipartimento Fis & Chim E Segre, Viale Sci, I-90128 Palermo, Italy
关键词
Machine learning; Neural Networks; Time Series Classification;
D O I
10.1016/j.nima.2022.167818
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Time Series Classification (TSC) is an important and challenging problem for many subject-matter domains and applications. It consists in assigning a class to a specific time series, recorded from sensors or live observations over time. TSC finds application in different fields, such as finance, medicine, robotics and physics. It can be used mainly for: Failure prediction, Anomaly detection, Pattern recognition and Alert generation. Here we present a new Neural Networks architecture, called Convolutional Echo State Network (CESN), to detect patterns and classify the univariate and multivariate time series. This architecture results from the combination of the Convolutional Neural Networks (CNNs) and the Echo State Networks (ESNs). CESN results are declared to be appropriate for the TSC tasks, both univariate and multivariate TS, while demonstrating a higher accuracy and sensitivity compared to previous tests with other existing algorithms. We applied this technique to the inertial sensors of a falling detection device.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Neural network for modeling non linear time series: A new approach
    Slim, C
    Trabelsi, A
    COMPUTATIONAL SICENCE - ICCS 2003, PT III, PROCEEDINGS, 2003, 2659 : 159 - 168
  • [42] A new hybrid recurrent artificial neural network for time series forecasting
    Erol Egrioglu
    Eren Bas
    Neural Computing and Applications, 2023, 35 : 2855 - 2865
  • [43] Bayesian Optimization of Spiking Neural Network Parameters to Solving the Time Series Classification Task
    Chernyshev, Alexey
    BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES (BICA) FOR YOUNG SCIENTISTS, 2016, 449 : 39 - 45
  • [44] A Deep Neural Network Framework for Multivariate Time Series Classification With Positive and Unlabeled Data
    Ienco, Dino
    IEEE ACCESS, 2023, 11 : 20877 - 20884
  • [45] 1D Quantum Convolutional Neural Network for Time Series Forecasting and Classification
    Alejandra Rivera-Ruiz, Mayra
    Leticia Juarez-Osorio, Sandra
    Mendez-Vazquez, Andres
    Mauricio Lopez-Romero, Jose
    Rodriguez-Tello, Eduardo
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, MICAI 2023, PT I, 2024, 14391 : 17 - 35
  • [46] Time Series Classification of Cryptocurrency Price Trend Based on a Recurrent LSTM Neural Network
    Kwon, Do-Hyung
    Kim, Ju-Bong
    Heo, Ju-Sung
    Kim, Chan-Myung
    Han, Youn-Hee
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2019, 15 (03): : 694 - 706
  • [47] Multivariate Time Series Classification With An Attention-Based Multivariate Convolutional Neural Network
    Tripathi, Achyut Mani
    Baruah, Rashmi Dutta
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [48] Time Series Classification Algorithm Based on Multiscale Residual Full Convolutional Neural Network
    Zhang Y.-W.
    Wang Z.-H.
    Liu H.-Y.
    Zeng Z.-B.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (02): : 555 - 570
  • [49] ConvTimeNet: A Pre-trained Deep Convolutional Neural Network for Time Series Classification
    Kashiparekh, Kathan
    Narwariya, Jyoti
    Malhotra, Pankaj
    Vig, Lovekesh
    Shroff, Gautam
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [50] Multi-Frequency Decomposition with Fully Convolutional Neural Network for Time Series Classification
    Han, Yongming
    Zhang, Shuheng
    Geng, Zhiqiang
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 284 - 289