Data-driven dynamic causality analysis of industrial systems using interpretable machine learning and process mining

被引:17
|
作者
Nadim, Karim [1 ,2 ]
Ragab, Ahmed [1 ,2 ,3 ]
Ouali, Mohamed-Salah [1 ]
机构
[1] Polytech Montreal, Dept Math & Ind Engn, Montreal, PQ H3T 1J4, Canada
[2] CanmetENERGY Nat Resources Canada NRCan, Varennes, PQ J3X 1P7, Canada
[3] Menoufia Univ, Fac Elect Engn, Menoufia 32952, Egypt
基金
加拿大自然科学与工程研究理事会;
关键词
Causality analysis; Interpretable machine learning; Process mining; Petri nets; Discrete event systems; Supervisory control; ROOT CAUSE DIAGNOSIS; FAULT-DIAGNOSIS; CHEMICAL-PROCESSES; GRANGER CAUSALITY; PROCESS MODELS; SIGNED DIGRAPHS; TREE ANALYSIS; PETRI NETS; GRAPH; MAP;
D O I
10.1007/s10845-021-01903-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The complexity of industrial processes imposes a lot of challenges in building accurate and representative causal models for abnormal events diagnosis, control and maintenance of equipment and process units. This paper presents an innovative data-driven causality modeling approach using interpretable machine learning and process mining techniques, in addition to human expertise, to efficiently and automatically capture the complex dynamics of industrial systems. The approach tackles a significant challenge in the causality analysis community, which is the discovery of high-level causal models from low-level continuous observations. It is based on the exploitation of event data logs by analyzing the dependency relationships between events to generate accurate multi-level models that can take the form of various state-event diagrams. Highly accurate and trustworthy patterns are extracted from the original data using interpretable machine learning integrated with a model enhancement technique to construct event data logs. Afterward, the causal model is generated from the event log using the inductive miner technique, which is one of the most powerful process mining techniques. The causal model generated is a Petri net model, which is used to infer causality between important events as well as a visualization tool for real-time tracking of the system's dynamics. The proposed causality modeling approach has been successfully tested based on a real industrial dataset acquired from complex equipment in a Kraft pulp mill located in eastern Canada. The generated causality model was validated by ensuring high model fitness scores, in addition to the process expert's validation of the results.
引用
收藏
页码:57 / 83
页数:27
相关论文
共 50 条
  • [41] An interpretable data-driven approach for process flowsheet convergence troubleshooting
    Qu, Shifeng
    Wang, Xinjie
    Du, Wenli
    Qian, Feng
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [42] Data-driven forecasting of ship motions in waves using machine learning and dynamic mode decomposition
    Diez, Matteo
    Gaggero, Mauro
    Serani, Andrea
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2024,
  • [43] Data-driven interpretable analysis for polysaccharide yield prediction
    Tian, Yushi
    Yang, Xu
    Chen, Nianhua
    Li, Chunyan
    Yang, Wulin
    ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY, 2024, 19
  • [44] DATA-DRIVEN CHIMNEY FIRE RISK PREDICTION USING MACHINE LEARNING AND POINT PROCESS TOOLS
    Lu, Changqin
    Van Lieshout, Marie-colette
    De Graaf, Maurits
    Visscher, Paul
    ANNALS OF APPLIED STATISTICS, 2023, 17 (04): : 3088 - 3111
  • [45] Data-Driven Soil Analysis and Evaluation for Smart Farming Using Machine Learning Approaches
    Huang, Yixin
    Srivastava, Rishi
    Ngo, Chloe
    Gao, Jerry
    Wu, Jane
    Chiao, Sen
    AGRICULTURE-BASEL, 2023, 13 (09):
  • [46] Machine Learning for the Development of Data-Driven Turbulence Closures in Coolant Systems
    Hammond, James
    Montomoli, Francesco
    Pietropaoli, Marco
    Sandberg, Richard D.
    Michelassi, Vittorio
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2022, 144 (08):
  • [47] Machine learning methods and systems for data-driven discovery in biomedical informatics
    Yoon, Sungroh
    Lee, Seunghak
    Wang, Wei
    METHODS, 2017, 129 : 1 - 2
  • [48] DATA-DRIVEN SCIENCE AND ENGINEERING: MACHINE LEARNING, DYNAMICAL SYSTEMS, AND CONTROL
    Luchtenburg, Dirk M.
    IEEE CONTROL SYSTEMS MAGAZINE, 2021, 41 (04): : 95 - +
  • [49] Accident data-driven human fatigue analysis in maritime transport using machine learning
    Fan, Shiqi
    Yang, Zaili
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 241
  • [50] Machine learning and data-driven fault detection for ship systems operations
    Cheliotis, Michail
    Lazakis, Iraklis
    Theotokatos, Gerasimos
    OCEAN ENGINEERING, 2020, 216