On Combinatorics of Voronoi Polytopes for Perturbations of the Dual Root Lattices

被引:1
|
作者
Garber, Alexey [1 ]
机构
[1] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Brownsville, TX 78520 USA
关键词
Parallelohedra; Root lattices; Voronoi conjecture; Venkov graph; CONVEX-BODIES; TILE SPACE; PARALLELOHEDRA; CONJECTURE;
D O I
10.1080/10586458.2021.1994488
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Voronoi conjecture on parallelohedra claims that for every convex polytope P that tiles Euclidean d-dimensional space with translations there exists a d-dimensional lattice such that P and the Voronoi polytope of this lattice are affinely equivalent. The Voronoi conjecture is still open for the general case but it is known that some combinatorial restrictions for the face structure of P ensure that the Voronoi conjecture holds for P. In this article, we prove that if P is the Voronoi polytope of one of the dual root lattices D-d*, E-6*, E-7* or E-8*=E-8 or their small perturbations, then every parallelohedron combinatorially equivalent to P in strong sense satisfies the Voronoi conjecture.
引用
收藏
页码:86 / 99
页数:14
相关论文
共 50 条
  • [41] Lattices generated by skeletons of reflexive polytopes
    Haase, Christian
    Nill, Benjamin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (02) : 340 - 344
  • [42] Lorentzian Lattices and E-Polytopes
    Clingher, Adrian
    Lee, Jae-Hyouk
    SYMMETRY-BASEL, 2018, 10 (10):
  • [43] Combinatorics of Polytopes with a Group of Linear Symmetries of Prime Power Order
    Helena A. Jorge
    Discrete & Computational Geometry, 2003, 30 : 529 - 542
  • [44] Combinatorics of polytopes with a group of linear symmetries of prime power order
    Jorge, HA
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (04) : 529 - 542
  • [45] On combinatorics of the Arthur trace formula, convex polytopes, and toric varieties
    Asgari, Mahdi
    Kaveh, Kiumars
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, : 375 - 420
  • [46] Approximate Voronoi cells for lattices, revisited
    Laarhoven, Thijs
    JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2021, 15 (01) : 60 - 71
  • [47] On Compact Representations of Voronoi Cells of Lattices
    Hunkenschroder, Christoph
    Reuland, Gina
    Schymura, Matthias
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2019, 2019, 11480 : 261 - 274
  • [48] Voronoi Shaping for Lattices With Efficient Encoding
    Buglia, H.
    Lopes, R. R.
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (05) : 1439 - 1442
  • [49] On compact representations of Voronoi cells of lattices
    Christoph Hunkenschröder
    Gina Reuland
    Matthias Schymura
    Mathematical Programming, 2020, 183 : 337 - 358
  • [50] On compact representations of Voronoi cells of lattices
    Hunkenschroder, Christoph
    Reuland, Gina
    Schymura, Matthias
    MATHEMATICAL PROGRAMMING, 2020, 183 (1-2) : 337 - 358