Bayesian Semiparametric Longitudinal Inverse-Probit Mixed Models for Category Learning
被引:0
|
作者:
Mukhopadhyay, Minerva
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Jodhpur, IndiaIndian Inst Technol, Jodhpur, India
Mukhopadhyay, Minerva
[1
]
Mchaney, Jacie R.
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Evanston, IL USAIndian Inst Technol, Jodhpur, India
Mchaney, Jacie R.
[2
]
论文数: 引用数:
h-index:
机构:
Chandrasekaran, Bharath
[2
]
Sarkar, Abhra
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Austin, TX USA
Univ Texas Austin, Dept Stat & Data Sci, 105 East 24th St D9800, Austin, TX 78712 USAIndian Inst Technol, Jodhpur, India
Sarkar, Abhra
[3
,4
]
机构:
[1] Indian Inst Technol, Jodhpur, India
[2] Northwestern Univ, Evanston, IL USA
[3] Univ Texas Austin, Austin, TX USA
[4] Univ Texas Austin, Dept Stat & Data Sci, 105 East 24th St D9800, Austin, TX 78712 USA
Understanding how the adult human brain learns novel categories is an important problem in neuroscience. Drift-diffusion models are popular in such contexts for their ability to mimic the underlying neural mechanisms. One such model for gradual longitudinal learning was recently developed in Paulon et al. (J Am Stat Assoc 116:1114-1127, 2021). In practice, category response accuracies are often the only reliable measure recorded by behavioral scientists to describe human learning. Category response accuracies are, however, often the only reliable measure recorded by behavioral scientists to describe human learning. To our knowledge, however, drift-diffusion models for such scenarios have never been considered in the literature before. To address this gap, in this article, we build carefully on Paulon et al. (J Am Stat Assoc 116:1114-1127, 2021), but now with latent response times integrated out, to derive a novel biologically interpretable class of 'inverse-probit' categorical probability models for observed categories alone. However, this new marginal model presents significant identifiability and inferential challenges not encountered originally for the joint model in Paulon et al. (J Am Stat Assoc 116:1114-1127, 2021). We address these new challenges using a novel projection-based approach with a symmetry-preserving identifiability constraint that allows us to work with conjugate priors in an unconstrained space. We adapt the model for group and individual-level inference in longitudinal settings. Building again on the model's latent variable representation, we design an efficient Markov chain Monte Carlo algorithm for posterior computation. We evaluate the empirical performance of the method through simulation experiments. The practical efficacy of the method is illustrated in applications to longitudinal tone learning studies.
机构:
Univ Texas Austin, Dept Stat & Data Sci, 2317 Speedway D9800, Austin, TX 78712 USAUniv Texas Austin, Dept Stat & Data Sci, 2317 Speedway D9800, Austin, TX 78712 USA
Sarkar, Abhra
Chabout, Jonathan
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Neurobiol, Durham, EnglandUniv Texas Austin, Dept Stat & Data Sci, 2317 Speedway D9800, Austin, TX 78712 USA
Chabout, Jonathan
Macopson, Joshua Jones
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Neurobiol, Durham, EnglandUniv Texas Austin, Dept Stat & Data Sci, 2317 Speedway D9800, Austin, TX 78712 USA
Macopson, Joshua Jones
Jarvis, Erich D.
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Neurobiol, Durham, England
Howard Hughes Med Inst, Chevy Chase, MD USA
Rockefeller Univ, 1230 York Ave, New York, NY 10021 USAUniv Texas Austin, Dept Stat & Data Sci, 2317 Speedway D9800, Austin, TX 78712 USA
Jarvis, Erich D.
Dunson, David B.
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Stat Sci, Durham, NC USAUniv Texas Austin, Dept Stat & Data Sci, 2317 Speedway D9800, Austin, TX 78712 USA
机构:
Chuxiong Normal Sch, Inst Appl Stat, Chuxiong 675000, Peoples R ChinaChuxiong Normal Sch, Inst Appl Stat, Chuxiong 675000, Peoples R China
Duan, Xingde
Fung, Wing Kam
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R ChinaChuxiong Normal Sch, Inst Appl Stat, Chuxiong 675000, Peoples R China
Fung, Wing Kam
Tang, Niansheng
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Dept Stat, Kunming, Peoples R ChinaChuxiong Normal Sch, Inst Appl Stat, Chuxiong 675000, Peoples R China
机构:
Capital Univ Econ & Business, Sch Stat, Beijing 10007D, Peoples R China
Yancheng Teachers Univ, Sch Math & Stat, Yancheng, Peoples R ChinaCapital Univ Econ & Business, Sch Stat, Beijing 10007D, Peoples R China
Sun, Huihui
Liu, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Capital Univ Econ & Business, Sch Stat, Beijing 10007D, Peoples R ChinaCapital Univ Econ & Business, Sch Stat, Beijing 10007D, Peoples R China
机构:
Penn State Univ, Ctr Stat Genet, Hershey, PA 17033 USA
Penn State Univ, Dept Stat, University Pk, PA 16802 USAPenn State Univ, Ctr Stat Genet, Hershey, PA 17033 USA
Das, Kiranmoy
Li, Jiahan
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Ctr Stat Genet, Hershey, PA 17033 USA
Penn State Univ, Dept Stat, University Pk, PA 16802 USAPenn State Univ, Ctr Stat Genet, Hershey, PA 17033 USA
Li, Jiahan
Fu, Guifang
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Ctr Stat Genet, Hershey, PA 17033 USA
Penn State Univ, Dept Stat, University Pk, PA 16802 USAPenn State Univ, Ctr Stat Genet, Hershey, PA 17033 USA
Fu, Guifang
Wang, Zhong
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Ctr Stat Genet, Hershey, PA 17033 USAPenn State Univ, Ctr Stat Genet, Hershey, PA 17033 USA
Wang, Zhong
Li, Runze
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Ctr Stat Genet, Hershey, PA 17033 USA
Penn State Univ, Dept Stat, University Pk, PA 16802 USAPenn State Univ, Ctr Stat Genet, Hershey, PA 17033 USA
Li, Runze
Wu, Rongling
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Ctr Stat Genet, Hershey, PA 17033 USA
Penn State Univ, Dept Stat, University Pk, PA 16802 USAPenn State Univ, Ctr Stat Genet, Hershey, PA 17033 USA