Diagnosis of pathological speech with streamlined features for long short-term memory learning

被引:4
|
作者
Pham, Tuan D. [1 ]
Holmes, Simon B. [1 ]
Zou, Lifong [1 ]
Patel, Mangala [1 ]
Coulthard, Paul [1 ]
机构
[1] Queen Mary Univ London, Barts & London Fac Med & Dent, Turner St, London E1 2AD, England
关键词
Pathological voice; Diagnosis; Feature extraction; Deep learning; Artificial intelligence; PARKINSONS-DISEASE; WAVE-PROPAGATION; SAMPLING THEORY; CLASSIFICATION; SCATTERING;
D O I
10.1016/j.compbiomed.2024.107976
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Pathological speech diagnosis is crucial for identifying and treating various speech disorders. Accurate diagnosis aids in developing targeted intervention strategies, improving patients' communication abilities, and enhancing their overall quality of life. With the rising incidence of speech -related conditions globally, including oral health, the need for efficient and reliable diagnostic tools has become paramount, emphasizing the significance of advanced research in this field. Methods: This paper introduces novel features for deep learning in the analysis of short voice signals. It proposes the incorporation of time -space and time-frequency features to accurately discern between two distinct groups: Individuals exhibiting normal vocal patterns and those manifesting pathological voice conditions. These advancements aim to enhance the precision and reliability of diagnostic procedures, paving the way for more targeted treatment approaches. Results: Utilizing a publicly available voice database, this study carried out training and validation using long short-term memory (LSTM) networks learning on the combined features, along with a data balancing strategy. The proposed approach yielded promising performance metrics: 90% accuracy, 93% sensitivity, 87% specificity, 88% precision, an F1 score of 0.90, and an area under the receiver operating characteristic curve of 0.96. The results surpassed those obtained by the networks trained using wavelet -time scattering coefficients, as well as several algorithms trained with alternative feature types. Conclusions: The incorporation of time-frequency and time -space features extracted from short segments of voice signals for LSTM learning demonstrates significant promise as an AI tool for the diagnosis of speech pathology. The proposed approach has the potential to enhance the accuracy and allow for real-time pathological speech assessment, thereby facilitating more targeted and effective therapeutic interventions.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Learning model predictive control with long short-term memory networks
    Terzi, Enrico
    Bonassi, Fabio
    Farina, Marcello
    Scattolini, Riccardo
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (18) : 8877 - 8896
  • [42] Deep Learning with Long Short-Term Memory for Time Series Prediction
    Hua, Yuxiu
    Zhao, Zhifeng
    Li, Rongpeng
    Chen, Xianfu
    Liu, Zhiming
    Zhang, Honggang
    IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (06) : 114 - 119
  • [43] A Novel Long Short-Term Memory Learning Strategy for Object Tracking
    Wang, Qian
    Yang, Jian
    Song, Hong
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2024, 2024
  • [44] A long short-term memory deep learning framework for explainable recommendation
    Zarzour, Hafed
    Jararweh, Yaser
    Hammad, Mahmoud M.
    Al-Smadi, Mohammed
    2020 11TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2020, : 233 - 237
  • [45] Prediction of Pathological Tremor Signals Using Long Short-Term Memory Neural Networks
    Pascual-Valdunciel, Alejandro
    Lopo-Martinez, Victor
    Sendra-Arranz, Rafael
    Gonzalez-Sanchez, Miguel
    Perez-Sanchez, Javier Ricardo
    Grandas, Francisco
    Torricelli, Diego
    Moreno, Juan C.
    Oliveira Barroso, Filipe
    Pons, Jose L.
    Gutierrez, Alvaro
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (12) : 5930 - 5941
  • [46] Speech enhancement using long short term memory with trained speech features and adaptive wiener filter
    Anil Garg
    Multimedia Tools and Applications, 2023, 82 : 3647 - 3675
  • [47] Convolutional Bidirectional Long Short-Term Memory for Deception Detection With Acoustic Features
    Xie, Yue
    Liang, Ruiyu
    Tao, Huawei
    Zhu, Yue
    Zhao, Li
    IEEE ACCESS, 2018, 6 : 76527 - 76534
  • [48] Speech enhancement using long short term memory with trained speech features and adaptive wiener filter
    Garg, Anil
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (03) : 3647 - 3675
  • [49] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [50] Internal attention to features in visual short-term memory guides object learning
    Fan, Judith E.
    Turk-Browne, Nicholas B.
    COGNITION, 2013, 129 (02) : 292 - 308