Analysis of drought characteristics and comparison of historical typical years with 2022 drought in the Yangtze River Basin

被引:5
|
作者
Xing, Lisong [1 ]
Zhao, Ruxin [1 ,2 ]
Sun, Hongquan [1 ,2 ]
Li, Ming [1 ,3 ]
Tan, Zhuoyan [1 ]
机构
[1] Minist Emergency Management China, Natl Inst Nat Hazards, 1 Anning Zhuang Rd,, Beijing 100085, Peoples R China
[2] Minist Emergency Management China, Key Lab Cpd & Chained Nat Hazards Dynam, Beijing 100085, Peoples R China
[3] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Drought characteristics; Empirical orthogonal function; Wavelet analysis; Similar drought years; Yangtze River Basin; STREAMFLOW; CHINA;
D O I
10.1007/s11069-023-06344-9
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In 2022, the Yangtze River Basin (YRB) experienced an unprecedented drought with long-term, large-scale, and severe consequences for agriculture, ecology, industrial production, and economic life. In order to investigate the evolution characteristics of the drought event in 2022, and discuss the similarities and differences with its similar historical drought years, this study focused on droughts during July-October (summer and autumn). The Standardized Precipitation Evapotranspiration Index was employed as a drought indicator. To analyze the spatial and temporal distribution patterns of drought and its mutability and periodicity in the YRB during 1951-2022, this study utilized the Empirical Orthogonal Function (EOF), Pettitt test, and wavelet analysis methods. We obtained similar drought years with the 2022 drought spatial pattern using the clustering method. The results show that the drought in the YRB in 2022 mainly presented a "basin-wide" drought spatial distribution pattern based on the first mode of EOF. The main periodicity of the "basin-wide" drought spatial distribution pattern was about 50 years. The July drought distribution patterns in 1952, 1953, and 2006 were most similar to that in 2022; however, the drought evolution patterns were obviously different after August. In comparison, the YRB experienced the largest drought-impacted area in 2022, and the impacted area proportions of severe and extreme drought increased at the fastest speed.
引用
收藏
页码:3699 / 3718
页数:20
相关论文
共 50 条
  • [31] Influence of the Three Gorges Reservoir on climate drought in the Yangtze River Basin
    Li, Xue
    Sha, Jian
    Wang, Zhong-Liang
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (23) : 29755 - 29772
  • [32] Influence of the Three Gorges Reservoir on climate drought in the Yangtze River Basin
    Xue Li
    Jian Sha
    Zhong-Liang Wang
    Environmental Science and Pollution Research, 2021, 28 : 29755 - 29772
  • [33] The multi-dimensional anomaly characteristics of the western Pacific subtropical high during the development of the 2022 major drought in the Yangtze River Basin
    Duan, Xinyu
    Zhang, Qiang
    Zhang, Liang
    Ma, Pengli
    Fang, Feng
    Yang, Jinhu
    Zhu, Biao
    CHINESE SCIENCE BULLETIN-CHINESE, 2024, 69 (15): : 2081 - 2092
  • [34] The Analysis of Drought Characteristics in Taoer River Basin Based on Copula Function
    Sun, Zhongyi
    Zhang, Jiquan
    Lan, Wu
    Zhu, Meng
    INFORMATION TECHNOLOGY FOR RISK ANALYSIS AND CRISIS RESPONSE, 2014, 102 : 188 - 192
  • [35] Analysis of Spatio-Temporal Evolution Characteristics of Drought and Its Driving Factors in Yangtze River Basin Based on SPEI
    Wei, Jieru
    Wang, Zhixiao
    Han, Lin
    Shang, Jiandong
    Zhao, Bei
    ATMOSPHERE, 2022, 13 (12)
  • [36] Monitoring of Extreme Drought in the Yangtze River Basin in 2022 Based on Multi-Source Remote Sensing Data
    Yu, Mingxiao
    He, Qisheng
    Jin, Rong
    Miao, Shuqi
    Wang, Rong
    Ke, Liangliang
    WATER, 2024, 16 (11)
  • [37] Drought and wetness events encounter and cascade effect in the Yangtze River and Yellow River Basin
    Lu, Jie
    Qin, Tianling
    Yan, Denghua
    Zhang, Xin
    Jiang, Shanhu
    Yuan, Zhe
    Xu, Shu
    Gao, Haoyue
    Liu, Hanxiao
    JOURNAL OF HYDROLOGY, 2024, 639
  • [38] Will the 2022 compound heatwave-drought extreme over the Yangtze River Basin become Grey Rhino in the future?
    Feng, Ai-Qing
    Chao, Qing-Chen
    Liu, Lu-Lu
    Gao, Ge
    Wang, Guo-Fu
    Zhang, Xue-Jun
    Wang, Qi-Guang
    ADVANCES IN CLIMATE CHANGE RESEARCH, 2024, 15 (03) : 547 - 556
  • [39] Impacts of Drought and Climatic Factors on Vegetation Dynamics in the Yellow River Basin and Yangtze River Basin, China
    Jiang, Weixia
    Niu, Zigeng
    Wang, Lunche
    Yao, Rui
    Gui, Xuan
    Xiang, Feifei
    Ji, Yuxi
    REMOTE SENSING, 2022, 14 (04)
  • [40] Analysis of drought determinants for the colorado river basin
    Balling, Robert C., Jr.
    Goodrich, Gregory B.
    CLIMATIC CHANGE, 2007, 82 (1-2) : 179 - 194