Analysis of drought characteristics and comparison of historical typical years with 2022 drought in the Yangtze River Basin

被引:5
|
作者
Xing, Lisong [1 ]
Zhao, Ruxin [1 ,2 ]
Sun, Hongquan [1 ,2 ]
Li, Ming [1 ,3 ]
Tan, Zhuoyan [1 ]
机构
[1] Minist Emergency Management China, Natl Inst Nat Hazards, 1 Anning Zhuang Rd,, Beijing 100085, Peoples R China
[2] Minist Emergency Management China, Key Lab Cpd & Chained Nat Hazards Dynam, Beijing 100085, Peoples R China
[3] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Drought characteristics; Empirical orthogonal function; Wavelet analysis; Similar drought years; Yangtze River Basin; STREAMFLOW; CHINA;
D O I
10.1007/s11069-023-06344-9
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In 2022, the Yangtze River Basin (YRB) experienced an unprecedented drought with long-term, large-scale, and severe consequences for agriculture, ecology, industrial production, and economic life. In order to investigate the evolution characteristics of the drought event in 2022, and discuss the similarities and differences with its similar historical drought years, this study focused on droughts during July-October (summer and autumn). The Standardized Precipitation Evapotranspiration Index was employed as a drought indicator. To analyze the spatial and temporal distribution patterns of drought and its mutability and periodicity in the YRB during 1951-2022, this study utilized the Empirical Orthogonal Function (EOF), Pettitt test, and wavelet analysis methods. We obtained similar drought years with the 2022 drought spatial pattern using the clustering method. The results show that the drought in the YRB in 2022 mainly presented a "basin-wide" drought spatial distribution pattern based on the first mode of EOF. The main periodicity of the "basin-wide" drought spatial distribution pattern was about 50 years. The July drought distribution patterns in 1952, 1953, and 2006 were most similar to that in 2022; however, the drought evolution patterns were obviously different after August. In comparison, the YRB experienced the largest drought-impacted area in 2022, and the impacted area proportions of severe and extreme drought increased at the fastest speed.
引用
收藏
页码:3699 / 3718
页数:20
相关论文
共 50 条
  • [1] Analysis of drought characteristics and comparison of historical typical years with 2022 drought in the Yangtze River Basin
    Lisong Xing
    Ruxin Zhao
    Hongquan Sun
    Ming Li
    Zhuoyan Tan
    Natural Hazards, 2024, 120 : 3699 - 3718
  • [2] Was the 2022 drought in the Yangtze River Basin, China more severe than other typical drought events by considering the natural characteristics and the actual impacts?
    Yang, Siquan
    Sun, Hongquan
    Zhao, Ruxin
    Xing, Lisong
    Tan, Zhuoyan
    Ning, Yuan
    Li, Ming
    THEORETICAL AND APPLIED CLIMATOLOGY, 2024, 155 (6) : 5543 - 5556
  • [3] The 2022 extreme drought in the Yangtze River Basin: Characteristics, causes and response strategies
    Ma M.
    Qu Y.
    Lyu J.
    Zhang X.
    Su Z.
    Gao H.
    Yang X.
    Chen X.
    Jiang T.
    Zhang J.
    Shen M.
    Wang Z.
    River, 2022, 1 (02): : 162 - 171
  • [4] Impacts and countermeasures of extreme drought in the Yangtze River Basin in 2022
    Xia J.
    Chen J.
    She D.
    Shuili Xuebao/Journal of Hydraulic Engineering, 2022, 53 (10): : 1143 - 1153
  • [5] How Severe Was the 2022 Flash Drought in the Yangtze River Basin?
    Yang, Liyan
    Wei, Jia
    REMOTE SENSING, 2024, 16 (22)
  • [6] Characteristics of Meteorological Drought Evolution in the Yangtze River Basin
    School of Geographic Sciences, Hunan Normal University, Changsha
    410081, China
    不详
    410081, China
    不详
    QC
    H3C 3P8, Canada
    Water, 23
  • [7] Extreme characteristics and causes of the drought event in the whole Yangtze River Basin in the midsummer of 2022
    Lyu, Zhuo-Zhuo
    Gao, Hui
    Gao, Rong
    Ding, Ting
    ADVANCES IN CLIMATE CHANGE RESEARCH, 2023, 14 (05) : 642 - 650
  • [8] Impacts of Drought and Heatwave on the Vegetation and Ecosystem in the Yangtze River Basin in 2022
    Chen, Siyuan
    Qiu, Ruonan
    Chen, Yumin
    Gong, Wei
    Han, Ge
    REMOTE SENSING, 2024, 16 (16)
  • [9] Response of evapotranspiration to the 2022 unprecedented extreme drought in the Yangtze River Basin
    Zhang, Yu
    Liu, Xiaomang
    Wang, Kaiwen
    Bai, Peng
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2024, 44 (08) : 2779 - 2791
  • [10] Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin
    Jain, Vinit K.
    Pandey, Rajendra P.
    Jain, Manoj K.
    Byun, Hi-Ryong
    WEATHER AND CLIMATE EXTREMES, 2015, 8 : 1 - 11