Microstructural evolution and intermetallic formation in Zn-3Mg (wt%) powder mixture processed by high-pressure torsion

被引:4
|
作者
Rahman, Tanzilur [1 ]
Yilmazer, Hakan [2 ,3 ]
Dikici, Burak [4 ]
Edalati, Kaveh [5 ]
Poplawsky, Jonathan D. [6 ]
Boehlert, Carl J. [1 ]
机构
[1] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA
[2] Yildiz Tech Univ, Dept Met & Mat Engn, Istanbul, Turkiye
[3] Hlth Biotechnol Joint Res & Applicat Ctr Excellenc, Istanbul, Turkiye
[4] Ataturk Univ, Fac Engn, Dept Met & Mat Engn, Erzurum, Turkiye
[5] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, WPI, Fukuoka, Japan
[6] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
基金
美国国家科学基金会;
关键词
High-pressure torsion; Zinc; Magnesium; Zn -Mg intermetallics; Ultrafine-grained biomaterial; SEVERE PLASTIC-DEFORMATION; PURE METALS; GRAIN-SIZE; DYNAMIC RECRYSTALLIZATION; PHASE-TRANSITIONS; CU; CONSOLIDATION; BEHAVIOR; ALLOYS; COLD;
D O I
10.1016/j.jallcom.2023.172101
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Severe plastic deformation (SPD) techniques have been used extensively over the past 40 years for producing strong metals and alloys. High-pressure torsion (HPT) is one of the most promising SPD techniques for achieving high strength through nanoscale grain refinement and phase transformation. In this research, a mixture of pure zinc (Zn) and magnesium (Mg) powders, Zn-3Mg (wt%), was HPT-processed under a pressure of 6 GPa for 1, 5, 10, 20, and 30 turns at room temperature to achieve a high strength biodegradable material. In order to un-derstand the effects of pre-consolidation on the resulting microstructure and hardness, HPT processing was performed on loose powders placed in the die and also on a pre-compacted powder mixture and the resulting HPT disks were characterized by X-ray diffraction, scanning electron microscopy, atom probe tomography, and Vickers microhardness. In both cases, the HPT disk microstructures contained nanoscale grains, and stable and metastable strain-induced intermetallics, but an unusual softening appeared at large shear strains. Grain size, grain morphology, and the formation of different intermetallics were analyzed to explain the unusual hardness distribution, and it was found that an inverse Hall-Petch relationship between hardness and grain size exists. It is suggested that thermally-activated phenomena such as grain boundary sliding contributed to the strain-induced softening of this nano-structured biomaterial due to its low melting point. The current results are compared with those for HPT-processed cast alloys and hybrids of the same composition.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion
    Cao, Y.
    Wang, Y. B.
    An, X. H.
    Liao, X. Z.
    Kawasaki, M.
    Ringer, S. P.
    Langdon, T. G.
    Zhu, Y. T.
    ACTA MATERIALIA, 2014, 63 : 16 - 29
  • [42] Microstructural Evolution in an Al-6061 Alloy Processed by High-Pressure Torsion and Rapid Annealing
    Loucif, Aicha
    Figueiredo, Roberto B.
    Baudin, Thierry
    Brisset, Francois
    Langdon, Terence G.
    NANOMATERIALS BY SEVERE PLASTIC DEFORMATION: NANOSPD5, PTS 1 AND 2, 2011, 667-669 : 223 - +
  • [43] Deformation Behavior and Microstructural Evolution of Cu-Ag Alloys Processed by High-Pressure Torsion
    Kormout, Karoline S.
    Yang, Bo
    Pippan, Reinhard
    ADVANCED ENGINEERING MATERIALS, 2015, 17 (12) : 1828 - 1834
  • [44] Influence of heat treatment on the microstructural evolution of Al-3 wt.% Cu during high-pressure torsion
    Hohenwarter, A.
    Faller, M.
    Rashkova, B.
    Pippan, R.
    PHILOSOPHICAL MAGAZINE LETTERS, 2014, 94 (06) : 342 - 350
  • [45] Effect of aging on microstructural development in an Al-Mg-Si alloy processed by high-pressure torsion
    Loucif, Aicha
    Figueiredo, Roberto B.
    Kawasaki, Megumi
    Baudin, Thierry
    Brisset, Francois
    Chemam, Rafik
    Langdon, Terence G.
    JOURNAL OF MATERIALS SCIENCE, 2012, 47 (22) : 7815 - 7820
  • [46] Microstructural characteristics of nickel processed to ultrahigh strains by high-pressure torsion
    Centro Nacional de Investigaciones Metalúrgicas , CSIC, 28040 Madrid, Spain
    不详
    不详
    不详
    不详
    不详
    Mater. Sci. Eng. A, 2008, 1-2 (207-212): : 207 - 212
  • [47] Quasicrystal phase evolution and mechanical properties of Mg-3.5Zn-0.6Gd alloy processed by high-pressure torsion
    Li, Ping
    Xia, Shuangwu
    Zhou, Yufeng
    Wang, Mingming
    Luo, Zhicheng
    Xue, Kemin
    VACUUM, 2023, 210
  • [48] Texture evolution of Mg during high-pressure torsion
    Bonarski, B. J.
    Schafler, E.
    Mingler, B.
    Skrotzki, W.
    Mikulowski, B.
    Zehetbauer, M. J.
    JOURNAL OF MATERIALS SCIENCE, 2008, 43 (23-24) : 7513 - 7518
  • [49] Texture evolution of Mg during high-pressure torsion
    B. J. Bonarski
    E. Schafler
    B. Mingler
    W. Skrotzki
    B. Mikulowski
    M. J. Zehetbauer
    Journal of Materials Science, 2008, 43 : 7513 - 7518
  • [50] On the thermal evolution of high-pressure torsion processed titanium aluminide
    Liss, Klaus-Dieter
    Liu, Xiaojing
    Li, Xi
    Han, Jae-Kyung
    Dippenaar, Rian J.
    Kawasaki, Megumi
    MATERIALS LETTERS, 2021, 304