COVID-19 detection and analysis from lung CT images using novel channel boosted CNNs

被引:21
|
作者
Khan, Saddam Hussain [1 ]
Iqbal, Javed [1 ]
Hassnain, Syed Agha [2 ]
Owais, Muhammad [3 ,4 ]
Mostafa, Samih M. [5 ,8 ]
Hadjouni, Myriam [6 ]
Mahmoud, Amena [7 ]
机构
[1] Univ Engn & Appl Sci, Dept Comp Syst Engn, Swat 19060, Pakistan
[2] Zhejiang Univ, Ocean Coll, Zheda Rd 1, Zhoushan 316021, Zhejiang, Peoples R China
[3] Khalifa Univ, Dept Elect Engn & Comp Sci, KUCARS, Abu Dhabi, U Arab Emirates
[4] Khalifa Univ, Dept Elect Engn & Comp Sci, C2PS, Abu Dhabi, U Arab Emirates
[5] South Valley Univ, Fac Comp & Informat, Comp Sci Dept, Qena 83523, Egypt
[6] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, POB 84428, Riyadh 11671, Saudi Arabia
[7] KafrElSkeikh Univ, Fac Comp & Informat, Dept Comp Sci, Kafr Al Sheikh, Egypt
[8] New Assiut Technol Univ NATU, Fac Ind & Energy Technol, New Assiut City, Egypt
关键词
COVID-19; CT lung; Detection; Analysis; Boosting; CNN; Split-transform-merge; Transfer-learning; CONVOLUTIONAL NEURAL-NETWORKS; CLASSIFICATION; CORONAVIRUS;
D O I
10.1016/j.eswa.2023.120477
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In December 2019, the global pandemic COVID-19 in Wuhan, China, affected human life and the worldwide economy. Therefore, an efficient diagnostic system is required to control its spread. However, the automatic diagnostic system poses challenges with a limited amount of labeled data, minor contrast variation, and high structural similarity between infection and background. In this regard, a new two-phase deep convolutional neural network (CNN) based diagnostic system is proposed to detect minute irregularities and analyze COVID-19 infection. In the first phase, a novel SB-STM-BRNet CNN is developed, incorporating a new channel Squeezed and Boosted (SB) and dilated convolutional-based Split-Transform-Merge (STM) block to detect COVID-19 infected lung CT images. The new STM blocks performed multi-path region-smoothing and boundary operations, which helped to learn minor contrast variation and global COVID-19 specific patterns. Furthermore, the diverse boosted channels are achieved using the SB and Transfer Learning concepts in STM blocks to learn texture variation between COVID-19-specific and healthy images. In the second phase, COVID-19 infected images are provided to the novel COVID-CB-RESeg segmentation CNN to identify and analyze COVID-19 infectious regions. The pro-posed COVID-CB-RESeg methodically employed region-homogeneity and heterogeneity operations in each encoder-decoder block and boosted-decoder using auxiliary channels to simultaneously learn the low illumi-nation and boundaries of the COVID-19 infected region. The proposed diagnostic system yields good perfor-mance in terms of accuracy: 98.21 %, F-score: 98.24%, Dice Similarity: 96.40 %, and IOU: 98.85 % for the COVID-19 infected region. The proposed diagnostic system would reduce the burden and strengthen the radi-ologist's decision for a fast and accurate COVID-19 diagnosis.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A novel deep learning-based method for COVID-19 pneumonia detection from CT images
    Ju Luo
    Yuhao Sun
    Jingshu Chi
    Xin Liao
    Canxia Xu
    BMC Medical Informatics and Decision Making, 22
  • [32] COVID-19 detection in CT and CXR images using deep learning models
    Ines Chouat
    Amira Echtioui
    Rafik Khemakhem
    Wassim Zouch
    Mohamed Ghorbel
    Ahmed Ben Hamida
    Biogerontology, 2022, 23 : 65 - 84
  • [33] COVID-19 detection in CT and CXR images using deep learning models
    Chouat, Ines
    Echtioui, Amira
    Khemakhem, Rafik
    Zouch, Wassim
    Ghorbel, Mohamed
    Ben Hamida, Ahmed
    BIOGERONTOLOGY, 2022, 23 (01) : 65 - 84
  • [34] Detection and Severity Classification of COVID-19 in CT Images Using Deep Learning
    Qiblawey, Yazan
    Tahir, Anas
    Chowdhury, Muhammad E. H.
    Khandakar, Amith
    Kiranyaz, Serkan
    Rahman, Tawsifur
    Ibtehaz, Nabil
    Mahmud, Sakib
    Maadeed, Somaya Al
    Musharavati, Farayi
    Ayari, Mohamed Arselene
    DIAGNOSTICS, 2021, 11 (05)
  • [35] A Traditional Machine Learning Approach for COVID-19 Detection from CT Images
    Kabir, Sultanul
    Mohammed, Emad A.
    Zaamout, Khobaib
    Ikki, Salama
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 256 - 263
  • [36] Detection of COVID-19 Disease with Machine Learning Algorithms from CT Images
    Ekersular, Mahmut Nedim
    Alkan, Ahmet
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2024, 37 (01): : 169 - 181
  • [37] COVID-19 detection in chest X-ray images using deep boosted hybrid learning
    Khan, Saddam Hussain
    Sohail, Anabia
    Khan, Asifullah
    Hassan, Mehdi
    Lee, Yeon Soo
    Alam, Jamshed
    Basit, Abdul
    Zubair, Saima
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [38] Novel Comparative Study for the Detection of COVID-19 Using CT Scan and Chest X-ray Images
    Hayat, Ahatsham
    Baglat, Preety
    Mendonca, Fabio
    Mostafa, Sheikh Shanawaz
    Morgado-Dias, Fernando
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2023, 20 (02)
  • [39] GIL-CNN: A Novel Multipath Features for COVID-19 Detection Using CT-Scan Images
    Mohan, N. Jagan
    Pandiri, D. N. Kiran
    IETE JOURNAL OF RESEARCH, 2023, 69 (12) : 8804 - 8815
  • [40] COVID-19 Detection on X-Ray Images using a Combining Mechanism of Pre-trained CNNs
    El Gannour, Oussama
    Hamida, Soufiane
    Saleh, Shawki
    Lamalem, Yasser
    Cherradi, Bouchaib
    Raihani, Abdelhadi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (06) : 564 - 570